Abstract
This article highlights a group of image processing, deep learning, and pattern matching techniques that can be used together in order to automatically identify different specimens of newts from a single species (Triturus cristatus Laurenti 1768). First, each image of newt will be: augmented, segmented, straightened. Then, patterns of images will be detected and compared between each other, allowing the differentiation of newts living in selected areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Didry, Yoanne, Mestdagh, Xavier, Tamisier, Thomas: Newtrap: improving biodiversity surveys by enhanced handling of visual observations. In: Luo, Yuhua (ed.) CDVE 2019. LNCS, vol. 11792, pp. 277–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30949-7_32
Didry, Y., Mestdagh, X., Tamisier,T.: Visualizing features on classified fauna images using class activation maps. In: CDVE, pp. 352–356 (2020)
Lowe, D.G.: Distinctive image features from scale-invariant Keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988). https://doi.org/10.1007/BF00133570
Demarty, C-H., Beucher, S.: Color Segmentation algorithm using an HLS Transformation. In: Mathematical Morphology and its Applications to Image and Signal Processing, p. 8 (2000). https://doi.org/10.1007/b117970
Hou, X., Zhang. L.: Saliency detection: a spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, Minneapolis, June 2007. https://doi.org/10.1109/CVPR.2007.383267
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv:1311.2524 [cs], October (2014). http://arxiv.org/abs/1311.2524
Ronneberger, O., Fischer, P., Brox. T.: U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 [cs], May 2015. http://arxiv.org/abs/1505.04597
Pan, S.J., and Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10) , pp. 1345–1359 (2009)
Zhang, T.Y., Suen, C.: A fast parallel algorithm for thinning digital patterns. Commun. ACM (1984). https://doi.org/10.1145/357994.358023
McConville, R., Santos-Rodriguez, R., Piechocki, R.J., Craddock, I.: N2D: (Not Too) Deep clustering via clustering the local manifold of an autoencoded embedding. arXiv:1908.05968 [cs, stat], June 2020. http://arxiv.org/abs/1908.05968
Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-Based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14
Asano, M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. arXiv:1911.05371 [cs], February 2020. http://arxiv.org/abs/1911.05371
Hermans, A., Beyer, L., Leibe, B.:In defense of the triplet loss for person re-identification. arXiv:1703.07737 [cs], November 2017. http://arxiv.org/abs/1703.07737
Matthé, M., et al.: Comparison of photo-matching algorithms commonly used for photographic capture-recapture studies. Ecol. Evol. 7(15), 5861–5872 (2017). https://doi.org/10.1002/ece3.3140
Acknowledgement
We would like to thanks Christian Hundt from NVIDIA AI Technology Center, for his very valuable advices throughout the creation of this work. Thanks to Remy Haas and Lionel L’Hoste for retrieving the pictures on the field and annotating them in Newtrap Manager. This work has been financed by the Luxembourg FNR through the POC17 NEWTRAP.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Magnette, G., Didry, Y., Mestdagh, X. (2021). Automatic Picture-Matching of Crested Newts. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2021. Lecture Notes in Computer Science(), vol 12983. Springer, Cham. https://doi.org/10.1007/978-3-030-88207-5_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-88207-5_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88206-8
Online ISBN: 978-3-030-88207-5
eBook Packages: Computer ScienceComputer Science (R0)