Abstract
Researchers in the digital humanities use visualization with ever increasing frequency to address their cultural data challenges. However, interdisciplinary and collaborative projects with visualization researchers are associated with various and common research challenges, such as cooperative communications and methodological differences. A number of strategies have been proposed to guide and steer general cooperative projects to realize the common team objectives. In this paper, we propose a methodological workflow for interdisciplinary digital humanities and visualization research based on our previous work and experience. Our methodological workflow consists of three spaces, three channels, and three criteria. The three spaces feature the main collaborative entities: problem, task, and solution spaces. The three channels illustrate the connections between spaces and include communication, pre-visualization, and evaluation channels. The three quality criteria include expressiveness, purposefulness, and trustfulness. These three criteria are included to ensure useful outcomes from each space. In each section of the workflow, we draw from our previous cooperations to demonstrate the effectiveness of the workflow.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdul-Rahman, A., et al.: Rule-based visual mappings-with a case study on poetry visualization. In: Proceedings of the 15th Eurographics Conference on Visualization (EuroVis), pp. 381–390 (2013). https://doi.org/10.1111/cgf.12125
Alharbi, M., Cheesman, T., Laramee, R.: AlignVis: semi-automatic alignment and visualization of parallel translations. In: 24th International Conference on Information Visualisation (IV), pp. 98–108 (2020). https://doi.org/10.1109/IV51561.2020.00026
Alharbi, M., Cheesman, T., Laramee, R.: VNLP: visible natural language processing (2020, submitted)
Alharbi, M., Cheesman, T., Laramee, R.S.: TransVis: integrated distant and close reading of Othello translations. IEEE Trans. Vis. Comput. Graph. 1 (2020). https://doi.org/10.1109/tvcg.2020.3012778
Alharbi, M., Laramee, R.S.: SoS TextVis: an extended survey of surveys on text visualization. Computers 8(1), 17–35 (2019)
Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: IEEE Symposium on Information Visualization. INFOVIS 2005, pp. 111–117 (2005). https://doi.org/10.1109/INFVIS.2005.1532136
Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. IEEE Trans. Vis. Comput. Graph. 19(12), 2376–2385 (2013)
Carpendale, S.: Evaluating information visualizations. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 19–45. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_2
Deegan, M., McCarty, W.: Collaborative Research in the Digital Humanities: A Volume in Honour of Harold Short, on the Occasion of His 65th Birthday and His Retirement, September 2010. Ashgate Publishing Company, USA (2012)
El-Assady, M., Gold, V., John, M., Ertl, T., Keim, D.A.: Visual text analytics in context of digital humanities. In: 1st IEEE VIS Workshop on Visualization for the Digital Humanities as part of the IEEE VIS 2016 (2016). https://scibib.dbvis.de/publications/view/686
Gold, M.K.: Debates in the Digital Humanities. University of Minnesota Press, Minneapolis (2012)
Hinrichs, U., Forlini, S., Moynihan, B.: In defense of sandcastles: research thinking through visualization in digital humanities. Digit. Sch. Humanit. 34(1), i80–i99 (2018). https://doi.org/10.1093/llc/fqy051
Hogan, T., Hinrichs, U., Hornecker, E.: The elicitation interview technique: capturing people’s experiences of data representations. IEEE Trans. Vis. Comput. Graph. 22(12), 2579–2593 (2016). https://doi.org/10.1109/TVCG.2015.2511718
Jänicke, S., Franzini, G., Cheema, M.F., Scheuermann, G.: Visual text analysis in digital humanities. Comput. Graph. Forum 36(6), 226–250 (2017). http://doi.wiley.com/10.1111/cgf.12873
Jänicke, S., Geßner, A., Franzini, G., Terras, M., Mahony, S., Scheuermann, G.: TraViz: a visualization for variant graphs. Digit. Sch. Humanit. 30(suppl\_1), 83–99 (2015). https://doi.org/10.1093/llc/fqv049
Kath, R., Schaal, G.S., Dumm, S.: New visual hermeneutics. Zeitschrift für germanistische Linguistik 43(1), 27–51 (2015)
Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical studies in information visualization: seven scenarios. IEEE Trans. Vis. Comput. Graph. 18(9), 1520–1536 (2012). https://doi.org/10.1109/TVCG.2011.279
Laramee, R.S.: How to write a visualization research paper: a starting point. Comput. Graph. Forum 29(8), 2363–2371 (2010). https://doi.org/10.1111/j.1467-8659.2010.01748.x
Miksch, S., Aigner, W.: A matter of time: applying a data-users-tasks design triangle to visual analytics of time-oriented data. Comput. Graph. 38, 286–290 (2014). https://doi.org/10.1016/j.cag.2013.11.002, http://www.sciencedirect.com/science/article/pii/S0097849313001817
Munzner, T.: A nested model for visualization design and validation. IEEE Trans. Vis. Comput. Graph. 15(6), 921–928 (2009). https://doi.org/10.1109/TVCG.2009.111
Plaisant, C.: The challenge of information visualization evaluation. In: Proceedings of the Working Conference on Advanced Visual Interfaces. AVI 2004, pp. 109–116. Association for Computing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/989863.989880
Roberts, R., Laramee, R., Brookes, P., Smith, G.A., D’Cruze, T., Roach, M.J.: A tale of two visions - exploring the dichotomy of interest between academia and industry in visualisation. In: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, pp. 319–326. INSTICC, SciTePress (2018). https://doi.org/10.5220/0006635803190326
Röhle, B.R.T.: Digital Methods: Five Challenges, pp. 67–84. Palgrave Macmillan UK, London (2012). https://doi.org/10.1057/9780230371934_4
Schetinger, V., Raminger, K., Filipov, V., Soursos, N., Zapke, S., Miksch, S.: Bridging the gap between visual analytics and digital humanities: Beyond the data-users-tasks design triangle, Eingeladen; Vortrag. In: 4th Workshop on Visualization for the Digital Humanities, Vancouver, Canada (2020)
Silvia, S., Etemadpour, R., Abbas, J., Huskey, S., Weaver, C.: When the tech kids are running too fast: Data visualisation through the lens of art history research. In: Proceedings of the Workshop on Visualization for the Digital Humanities. IEEE, Berlin, Germany, October 2018
Simon, S., Mittelstädt, S., Keim, D.A., Sedlmair, M.: Bridging the gap of domain and visualization experts with a liaison. In: Bertini, E., Kennedy, J., Puppo, E. (eds.) Eurographics Conference on Visualization (EuroVis) - Short Papers. The Eurographics Association (2015). https://doi.org/10.2312/eurovisshort.20151137
Tory, M., Moller, T.: Human factors in visualization research. IEEE Trans. Vis. Comput. Graph. 10(1), 72–84 (2004). https://doi.org/10.1109/TVCG.2004.1260759
Van Den Berg, H., et al.: A philosophical perspective on visualization for digital humanities. In: Proceedings 3rd Workshop on Visualization for the Digital Humanities (VIS4DH) (2018)
van Wijk, J.J.: Views on visualization. IEEE Trans. Vis. Comput. Graph. 12(4), 421–432 (2006). https://doi.org/10.1109/TVCG.2006.80
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Alharbi, M., Cheesman, T., Laramee, R.S. (2021). Cooperative Digital Humanities: A Methodology. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2021. Lecture Notes in Computer Science(), vol 12983. Springer, Cham. https://doi.org/10.1007/978-3-030-88207-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-88207-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88206-8
Online ISBN: 978-3-030-88207-5
eBook Packages: Computer ScienceComputer Science (R0)