Skip to main content

How Few Annotations are Needed for Segmentation Using a Multi-planar U-Net?

  • Conference paper
  • First Online:
Deep Generative Models, and Data Augmentation, Labelling, and Imperfections (DGM4MICCAI 2021, DALI 2021)

Abstract

U-Net architectures are an extremely powerful tool for segmenting 3D volumes, and the recently proposed multi-planar U-Net has reduced the computational requirement for using the U-Net architecture on three-dimensional isotropic data to a subset of two-dimensional planes. While multi-planar sampling considerably reduces the amount of training data needed, providing the required manually annotated data can still be a daunting task. In this article, we investigate the multi-planar U-Net’s ability to learn three-dimensional structures in isotropic sampled images from sparsely annotated training samples. We extend the multi-planar U-Net with random annotations, and we present our empirical findings on two public domains, fully annotated by an expert. Surprisingly we find that the multi-planar U-Net on average outperforms the 3D U-Net in most cases in terms of dice, sensitivity, and specificity and that similar performance from the multi-planar unit can be obtained from half the number of annotations by doubling the number of automatically generated training planes. Thus, sometimes less is more!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (ICML), pp. 448–456. PMLR (2015)

    Google Scholar 

  2. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  3. Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2013). https://doi.org/10.1109/CVPR.2013.259

  4. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill (2016). https://doi.org/10.23915/distill.00003. http://distill.pub/2016/deconv-checkerboard

  5. Perslev, M., Dam, E.B., Pai, A., Igel, C.: One network to segment them all: a general, lightweight system for accurate 3D medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_4

    Chapter  Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms, February 2019

    Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Michael Laprade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laprade, W.M., Perslev, M., Sporring, J. (2021). How Few Annotations are Needed for Segmentation Using a Multi-planar U-Net?. In: Engelhardt, S., et al. Deep Generative Models, and Data Augmentation, Labelling, and Imperfections. DGM4MICCAI DALI 2021 2021. Lecture Notes in Computer Science(), vol 13003. Springer, Cham. https://doi.org/10.1007/978-3-030-88210-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88210-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88209-9

  • Online ISBN: 978-3-030-88210-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics