Abstract
Let \(N=pq\) be an RSA modulus with balanced prime factors. In 2018, Murru and Saettone presented a variant of the RSA cryptosystem based on a cubic Pell equation in which the public key (N, e) and the private key (N, d) satisfy \(ed\equiv 1\pmod {\left( p^2+p+1\right) \left( q^2+q+1\right) }\). They claimed that the classical small private attacks on RSA such as Wiener’s continued fraction attack do not apply to their scheme. In this paper, we show that, on the contrary, Wiener’s method as well as the small inverse problem technique of Boneh and Durfee can be applied to attack their scheme. More precisely, we show that the proposed variant of RSA can be broken if \(d<N^{0.5694}\). This shows that their scheme is in reality more vulnerable than RSA, where the bound of vulnerability is \(d<N^{0.292}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adenan, N.N.H., Ariffin, M.R.K., Sapar, S.H., Ghafar, A.H.A., Asbullah, M.A.: New Jochemsz-May cryptanalytic bound for RSA system utilizing common modulus \(N=p^2q\). Mathematics 9(4), 340 (2021). https://www.mdpi.com/2227-7390/9/4/340
Blömer, J., May, A.: A generalized Wiener attack on RSA. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_1
Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc. 46(2), 203–213 (1999)
Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 25–34. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1_3
Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring \(N=p^rq\) for large \(r\). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 326–337. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_21
Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key \(d\) less than \(N^{0.292}\). In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_1
Boudabra, M., Nitaj, A.: A new generalization of the KMOV cryptosystem. J. Appl. Math. Comput. 57(1-2), 229–245 (2018)
Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)
Demytko, N.: A new elliptic curve based analogue of RSA. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 40–49. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_4
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_22
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edition. The Clarendon Press, Oxford University Press, New York (1979)
Hinek, M.: Cryptanalysis of RSA and its Variants. Cryptography and Network Security Series, Chapman & Hall/CRC, Boca Raton (2009)
Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458
Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_18
Koyama, K.: Fast RSA-type schemes based on singular cubic curves \(y^{2}+axy \equiv x^{3}({\rm mod}\,\mathit{n})\). In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 329–340. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X_27
Koyama, K., Maurer, U.M., Okamoto, T., Vanstone, S.A.: New public-key schemes based on elliptic curves over the ring \(\mathbb{Z}_n\). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 252–266. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_20
Kuwakado H., Koyama K., Tsuruoka, Y.: A new RSA-type scheme based on singular cubic curves \(y^{2}\equiv x^{3}+bx^{2}({\rm mod}\, \mathit{n})\). IEICE Trans. Fundamentals E78-A, 27–33 (1995)
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 513–534 (1982)
Lenstra, A.K., Verheul, E.R.: The XTR public key system. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_1
Murru, N., Saettone, F.M.: A novel RSA-like cryptosystem based on a generalization of the Rédei rational functions. In: Kaczorowski, J., Pieprzyk, J., Pomykała, J. (eds.) NuTMiC 2017. LNCS, vol. 10737, pp. 91–103. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76620-1_6
Nitaj, A.: Another generalization of Wiener’s attack on RSA. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 174–190. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_12
Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Sarkar, S.: Small secret exponent attack on RSA variant with modulus \(N=p^rq\). Des. Codes Cryptogr. 73(2), 383–392 (2014)
Takagi, T.: A fast RSA-type public-key primitive modulo \(p^kq\) using Hensel lifting. IEICE Trans. 87-A, 94–101 (2004)
de Weger, B.: Cryptanalysis of RSA with small prime difference. Appl. Algebra Eng. Commun. Comput. 13(1), 17–28 (2002)
Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36, 553–558 (1990)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nitaj, A., Ariffin, M.R.B.K., Adenan, N.N.H., Abu, N.A. (2021). Classical Attacks on a Variant of the RSA Cryptosystem. In: Longa, P., Ràfols, C. (eds) Progress in Cryptology – LATINCRYPT 2021. LATINCRYPT 2021. Lecture Notes in Computer Science(), vol 12912. Springer, Cham. https://doi.org/10.1007/978-3-030-88238-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-88238-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88237-2
Online ISBN: 978-3-030-88238-9
eBook Packages: Computer ScienceComputer Science (R0)