Skip to main content

Image Splicing Forgery Detection Techniques: A Review

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1441))

Included in the following conference series:

Abstract

The authenticity of digital images is openly challenged today due to the easy availability of various advanced image editing software. The semantic meaning of an image can be changed upto any extent with the help of these software. Image splicing forgery is one of the most popular ways to manipulate the content of an image. In image splicing forgery, two or more images or the parts of the images are used to create a spliced (composite) image. Spliced images can be misused in many ways. Therefore, to revive the trustworthiness of digital images, several efforts are made by researchers to develop various methods to detect image splicing forgery in the last few years. The main objective of this study is to review and analyze the recent work in this area. In this paper, first, a generalized workflow to detect image splicing forgery is presented. Second, this paper categorized the existing image splicing detection methods as hand-crafted feature-based and deep learning-based. Third, various publicly available image datasets are also summarized. Finally, future research directions are provided to help the researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abhishek, Jindal, N.: Copy move and splicing forgery detection using deep convolution neural network, and semantic segmentation. Multimed. Tools Appl. 80, 3571–3599 (2021)

    Google Scholar 

  2. Abrahim, A.R., Rahim, M.S.M., Sulong, G.: Bin: Splicing image forgery identification based on artificial neural network approach and texture features. Cluster Comput. 22, 647–660 (2019)

    Article  Google Scholar 

  3. Agarwal, S., Chand, S.: Image forgery detection using co-occurrence-based texture operator in frequency domain. In: Sa, P.K., Sahoo, M.N., Murugappan, M., Wu, Y., Majhi, B. (eds.) Progress in Intelligent Computing Techniques: Theory, Practice, and Applications. AISC, vol. 518, pp. 117–122. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-3373-5_10

    Chapter  Google Scholar 

  4. Ahmed, B., Gulliver, T.A., alZahir, S.: Image splicing detection using mask-RCNN. SIViP 14(5), 1035–1042 (2020). https://doi.org/10.1007/s11760-020-01636-0

    Article  Google Scholar 

  5. Alahmadi, A., Hussain, M., Aboalsamh, H., Muhammad, G., Bebis, G., Mathkour, H.: Passive detection of image forgery using DCT and local binary pattern. SIViP 11(1), 81–88 (2016). https://doi.org/10.1007/s11760-016-0899-0

    Article  Google Scholar 

  6. Ali Qureshi, M., Deriche, M.: A review on copy move image forgery detection techniques. In: 2014 IEEE 11th International Multi-Conference Syst. Signals Devices, SSD 2014, pp. 1–5 (2014)

    Google Scholar 

  7. Ansari, M.D., Ghrera, S.P., Tyagi, V.: Pixel-based image forgery detection: a review. IETE J. Educ. 55, 40–46 (2014)

    Article  Google Scholar 

  8. Asghar, K., Habib, Z., Hussain, M.: Copy-move and splicing image forgery detection and localization techniques: a review. Aust. J. Forensic Sci. 49, 281–307 (2017)

    Article  Google Scholar 

  9. Bappy, J.H., Roy-Chowdhury, A.K., Bunk, J., Nataraj, L., Manjunath, B.S.: Exploiting spatial structure for localizing manipulated image regions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4980–4989 (2017)

    Google Scholar 

  10. Bappy, J.H., Simons, C., Nataraj, L., Manjunath, B.S., Roy-Chowdhury, A.K.: Hybrid LSTM and encoder-decoder architecture for detection of image forgeries. IEEE Trans. Image Process. 28, 3286–3300 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bayar, B., Member, S., Stamm, M.C.: Constrained convolutional neural networks : a new approach towards general purpose image image manipulation detection. IEEE Trans. Inf. Forensics Secur. 6013, 1–17 (2018)

    Google Scholar 

  12. Ben-Meir, I.: Anti-Iran Deal TV Ad Uses Fake Image Of Obama Meeting Iranian President. https://www.buzzfeed.com/ilanbenmeir/anti-iran-deal-tv-ad-uses-fake-image-of-obama-meeting-irania?utm_term=.per5RX6Bw#.ftNZW4Ney

  13. Bi, X., et al.: D-UNet: A dual-encoder U-Net for image splicing forgery detection and localization, http://arxiv.org/abs/2012.01821 (2020)

  14. Bi, X., Wei, Y., Xiao, B., Li, W.: RRU-Net : the ringed residual U-Net for image splicing forgery detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 30–39 (2019)

    Google Scholar 

  15. Birajdar, G.K., Mankar, V.H.: Digital image forgery detection using passive techniques: a survey. Digit. Investig. 10, 226–245 (2013)

    Article  Google Scholar 

  16. Bunk, J., Bappy, J.H., Mohammed, T.M., Nataraj, L.: Detection and localization of image forgeries using resampling features and deep learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1881–1889 (2017)

    Google Scholar 

  17. Carvalho, T.J.D., Riess, C., Angelopoulou, E., Pedrini, H., Rocha, A.D.R.: Exposing digital image forgeries by illumination color classification. IEEE Trans. Inf. Forensics Secur. 8, 1182–1194 (2013)

    Article  Google Scholar 

  18. Chen, B., Qi, X., Sun, X., Shi, Y.Q.: Quaternion pseudo-Zernike moments combining both of RGB information and depth information for color image splicing detection. J. Vis. Commun. Image Represent. 49, 283–290 (2017)

    Article  Google Scholar 

  19. Chen, B., Qi, X., Wang, Y., Zheng, Y., Shim, H.J., Shi, Y.Q.: An improved splicing localization method by fully convolutional networks. IEEE Access. 6, 69472–69480 (2018)

    Article  Google Scholar 

  20. Chen, C., Mccloskey, S.: Image splicing detection via camera response function analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5087–5096 (2017)

    Google Scholar 

  21. Chen, H., Zhao, C., Shi, Z., Zhu, F.: An image splicing localization algorithm based on SLIC and image features. In: Hong, R., Cheng, W.-H., Yamasaki, T., Wang, M., Ngo, C.-W. (eds.) PCM 2018. LNCS, vol. 11166, pp. 608–618. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00764-5_56

    Chapter  Google Scholar 

  22. Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7, 1841–1854 (2012)

    Article  Google Scholar 

  23. Cozzolino, D., Verdoliva, L.: Noiseprint: a CNN-based camera model fingerprint. IEEE Trans. Inf. Forensics Secur. 1–13 (2019)

    Google Scholar 

  24. Cun, X., Pun, C.-M.: Image splicing localization via semi-global network and fully connected conditional random fields. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11130, pp. 252–266. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11012-3_22

    Chapter  Google Scholar 

  25. Das, A., Aji, S.: A fast and efficient method for image splicing localization using BM3D noise estimation. In: Krishna, A.N., Srikantaiah, K.C., Naveena, C. (eds.) Integrated Intelligent Computing, Communication and Security. SCI, vol. 771, pp. 643–650. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8797-4_65

    Chapter  Google Scholar 

  26. Devagiri, V.M., Cheddad, A.: Splicing forgery detection and the impact of image resolution. In: Proceedings of the 9th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2017, pp. 1–6 (2017)

    Google Scholar 

  27. El-Latif, E.I.A., Taha, A., Zayed, H.: A passive approach for detecting image splicing using deep learning and haar wavelet transform. Int. J. Comput. Netw. Inf. Secur. 11, 28–35 (2019)

    Google Scholar 

  28. Abd El-Latif, E.I., Taha, A., Zayed, H.H.: A passive approach for detecting image splicing based on deep learning and wavelet transform. Arab. J. Sci. Eng. 45(4), 3379–3386 (2020). https://doi.org/10.1007/s13369-020-04401-0

    Article  Google Scholar 

  29. Elsharkawy, Z., Abdelwahab, S., Abd El-Samie, F., Dessouky, M., Elaraby, S.: New and efficient blind detection algorithm for digital image forgery using homomorphic image processing. Multimed. Tools and Appl. 78(15), 21585–21611 (2019). https://doi.org/10.1007/s11042-019-7206-3

    Article  Google Scholar 

  30. Farid, H.: Image forgery detection a survey. IEEE Signal Process. Mag. 26, 16–25 (2009)

    Article  Google Scholar 

  31. Fontani, M., Bianchi, T., De Rosa, A., Piva, A., Barni, M.: A framework for decision fusion in image forensics based on Dempster-Shafer Theory of Evidence. IEEE Trans. Inf. Forensics Secur. 8, 593–607 (2013)

    Article  Google Scholar 

  32. Gokhale, A.L., et al.: AbhAS : a novel realistic image splicing forensics dataset. J. Appl. Secur. Res. 1–23 (2020)

    Google Scholar 

  33. Hadigheh, H.G., Sulong, G.: Bin: splicing forgery detection based on neuro fuzzy fusion. Life Sci. J. 15, 2017–2019 (2018)

    Google Scholar 

  34. Han, J.G., Park, T.H., Moon, Y.H., Eom, I.K.: Quantization-based Markov feature extraction method for image splicing detection. Mach. Vis. Appl. 29(3), 543–552 (2018). https://doi.org/10.1007/s00138-018-0911-5

    Article  Google Scholar 

  35. Hao, H., Delp, E.J., Lafayette, W.: Manipulation detection in satellite images using deep belief networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2832–2840 (2020)

    Google Scholar 

  36. Hussien, N.Y., Mahmoud, R.O., Zayed, H.H.: Deep learning on digital image splicing detection using CFA artifacts. Int. J. Sociotechnol. Knowl. Dev. 12, 31–44 (2020)

    Article  Google Scholar 

  37. Iakovidou, C., Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Content-aware detection of JPEG grid inconsistencies for intuitive image forensics. J. Vis. Commun. Image Represent. 54, 155–170 (2018)

    Article  Google Scholar 

  38. Itier, V., Strauss, O., Morel, L., Puech, W.: Color noise correlation-based splicing detection for image forensics. Multimed. Tools Appl. 80(9), 13215–13233 (2021). https://doi.org/10.1007/s11042-020-10326-5

    Article  Google Scholar 

  39. Dong, W.W.: CASIA tampered image detection evaluation database (2013). http://forensics.idealtest.org

  40. Dong, W.W.: CASIA2 tampered image detection evaluation (TIDE) database (2015). http://forensics.idealtest.org

  41. Jaiswal, A.K., Srivastava, R.: A technique for image splicing detection using hybrid feature set. Multimed. Tools Appl. 79(17–18), 11837–11860 (2020). https://doi.org/10.1007/s11042-019-08480-6

    Article  Google Scholar 

  42. Jalab, H., Subramaniam, T., Ibrahim, R., Kahtan, H., Noor, N.: New texture descriptor based on modified fractional entropy for digital image splicing forgery detection. Entropy 21, 371 (2019)

    Article  MathSciNet  Google Scholar 

  43. McDonald, J.: Social Media Posts Spread Bogus Coronavirus Conspiracy Theory. https://www.factcheck.org/2020/01/social-media-posts-spread-bogus-coronavirus-conspiracy-theory/

  44. Kanwal, N., Girdhar, A., Kaur, L., Bhullar, J.S.: Digital image splicing detection technique using optimal threshold based local ternary pattern. Multimed. Tools Appl. 79(19–20), 12829–12846 (2020). https://doi.org/10.1007/s11042-020-08621-2

    Article  Google Scholar 

  45. Korus, P., Huang, J.: Multi-scale fusion for improved localization of malicious tampering in digital images. IEEE Trans. Image Process. 25, 1312–1326 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kumar, A., Prakash, C.S., Maheshkar, S., Maheshkar, V.: Markov feature extraction using enhanced threshold method for image splicing forgery detection. In: Panigrahi, B.K., Trivedi, M.C., Mishra, K.K., Tiwari, S., Singh, P.K. (eds.) Smart Innovations in Communication and Computational Sciences. AISC, vol. 670, pp. 17–27. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8971-8_2

    Chapter  Google Scholar 

  47. Li, C., Ma, Q., Xiao, L., Li, M., Zhang, A.: Image splicing detection based on markov features in QDCT domain. Neurocomputing 1, 297–303 (2015)

    Google Scholar 

  48. Lin, C.Y., Wu, M., Bloom, J.A., Cox, I.J., Miller, M.L., Lui, Y.M.: Rotation, scale, and translation resilient watermaking for images. IEEE Trans. Image Process. 10, 767–782 (2001)

    Article  MATH  Google Scholar 

  49. Liu, B., Pun, C.M.: Locating splicing forgery by adaptive-SVD noise estimation and vicinity noise descriptor. Neurocomputing. 387, 172–187 (2020)

    Article  Google Scholar 

  50. Liu, B., Pun, C.M.: Locating splicing forgery by fully convolutional networks and conditional random field. Signal Process. Image Commun. 66, 103–112 (2018)

    Article  Google Scholar 

  51. Liu, B., Pun, C.M.: Exposing splicing forgery in realistic scenes using deep fusion network. Inf. Sci. (Ny) 526, 133–150 (2020)

    Article  MathSciNet  Google Scholar 

  52. Liu, B., Pun, C.M., Yuan, X.C.: Digital image forgery detection using JPEG features and local noise discrepancies. Sci. World J. 2014 (2014)

    Google Scholar 

  53. Liu, Y., Guan, Q., Zhao, X., Cao, Y.: Image forgery localization based on multi-scale convolutional neural networks. In: ACM Workshop on Information Hiding and Multimedia Security, pp. 85–90 (2017)

    Google Scholar 

  54. Lu, C., Liao, H.M., Member, S.: Structural digital signature for image authentication : an incidental distortion resistant scheme. IEEE Trans. Multimed. 5, 161–173 (2003)

    Article  Google Scholar 

  55. Machado, C., Kira, B., Howard, P.N.: A study of misinformation in WhatsApp groups with a focus on the Brazilian Presidential Elections. In: WWW 2019: Companion Proceedings of The 2019 World Wide Web Conference, pp. 1013–1019 (2019)

    Google Scholar 

  56. Manu, V.T., Mehtre, B.M.: Tamper detection of social media images using quality artifacts and texture features. Forensic Sci. Int. 295, 100–112 (2019)

    Article  Google Scholar 

  57. Mazumdar, A., Bora, P.K.: Estimation of lighting environment for exposing image splicing forgeries. Multimed. Tools Appl. 78(14), 19839–19860 (2019). https://doi.org/10.1007/s11042-018-7147-2

    Article  Google Scholar 

  58. Mazumdar, A., Bora, P.K.: Deep learning-based classification of illumination maps for exposing face splicing forgeries in images. In: 2019 IEEE International Conference on Image Processing, pp. 116–120 (2019)

    Google Scholar 

  59. Meena, K.B., Tyagi, V.: A novel method to distinguish photorealistic computer generated images from photographic images. In: 2019 Fifth International Conference on Image Information Processing (ICIIP), Shimla, India, pp. 385–390 (2019)

    Google Scholar 

  60. Meena, K.B., Tyagi, V.: A deep learning based method to discriminate between photorealistic computer generated images and photographic images. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Valentino, G. (eds.) ICACDS 2020. CCIS, vol. 1244, pp. 212–223. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6634-9_20

    Chapter  Google Scholar 

  61. Meena, K., Tyagi, V.: Methods to distinguish photorealistic computer generated images from photographic images: a review. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds.) ICACDS 2019. CCIS, vol. 1045, pp. 64–82. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-9939-8_7

    Chapter  Google Scholar 

  62. Meena, K.B., Tyagi, V.: Distinguishing computer-generated images from photographic images using two-stream convolutional neural network. Appl. Soft Comput. J. 100, 107025 (2021)

    Google Scholar 

  63. Meena, K., Tyagi, V.: Image forgery detection: survey and future directions. In: Shukla, R.K., Agrawal, J., Sharma, S., Singh Tomer, G. (eds.) Data, Engineering and applications, pp. 163–194. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6351-1_14

    Chapter  Google Scholar 

  64. Meena, K.B., Tyagi, V.: A deep learning based method for image splicing detection. J. Phys. Conf. Ser. 1714 (2021)

    Google Scholar 

  65. Meena, K.B., Tyagi, V.: A copy-move image forgery detection technique based on Gaussian-Hermite moments. Multimed. Tools Appl. 78(23), 33505–33526 (2019). https://doi.org/10.1007/s11042-019-08082-2

    Article  Google Scholar 

  66. Meena, K.B., Tyagi, V.: A copy-move image forgery detection technique based on tetrolet transform. J. Inf. Secur. Appl. 52, 102481–102490 (2020)

    Google Scholar 

  67. Meena, K.B., Tyagi, V.: A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms. Multimed. Tools Appl. 79, 8197–8212 (2020)

    Google Scholar 

  68. Moghaddasi, Z., Jalab, H.A., Noor, R.M.: Image splicing forgery detection based on low-dimensional singular value decomposition of discrete cosine transform coefficients. Neural Comput. Appl. 31(11), 7867–7877 (2018). https://doi.org/10.1007/s00521-018-3586-y

    Article  Google Scholar 

  69. Ng, T.-T., Chang, S.-F.: A data set of authentic and spliced image Blocks. ADVENT Technical Report #203-2004-3, Columbia University, New York (2004)

    Google Scholar 

  70. Niyishaka, P., Bhagvati, C.: Image splicing detection technique based on Illumination-Reflectance model and LBP. Multimed. Tools Appl. 80(2), 2161–2175 (2020). https://doi.org/10.1007/s11042-020-09707-7

    Article  Google Scholar 

  71. OdabaÅŸ Yildirim, E., UlutaÅŸ, G.: Markov-based image splicing detection in the DCT high frequency region. In: 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018 (2019)

    Google Scholar 

  72. Peng, Z., Xintong, H., Davis, L.S.: Learning rich features for image manipulation detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1053–1061 (2018)

    Google Scholar 

  73. Pham, N.T., Lee, J.-W., Kwon, G.-R., Park, C.-S.: Efficient image splicing detection algorithm based on markov features. Multimed. Tools Appl. 78(9), 12405–12419 (2018). https://doi.org/10.1007/s11042-018-6792-9

    Article  Google Scholar 

  74. Pun, C.M., Liu, B., Yuan, X.C.: Multi-scale noise estimation for image splicing forgery detection. J. Vis. Commun. Image Represent. 38, 195–206 (2016)

    Article  Google Scholar 

  75. ur Rhhman, H., et al.: Comparative analysis of various image splicing algorithms. In: Balas, V.E., Jain, L.C., Balas, M.M., Shahbazova, S.N. (eds.) SOFA 2018. AISC, vol. 1222, pp. 211–228. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-52190-5_15

    Chapter  Google Scholar 

  76. Rahman, M., Tajrin, J., Hasnat, A., Uzzaman, N., Rahaman, G.M.A.: SMIFD: novel social media image forgery detection database. In: 22nd International Conference on Computer and Information Technology (ICCIT), pp. 18–20. IEEE (2019)

    Google Scholar 

  77. Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move forgeries in images. In: 8th IEEE International Workshop on Information Forensics Security, WIFS 2016, pp. 1–6 (2017)

    Google Scholar 

  78. Rao, Y., Ni, J., Zhao, H.: Deep learning local descriptor for image splicing detection and localization. IEEE Access, 25611–25625 (2020)

    Google Scholar 

  79. Rezende, E., Rocha, A., Carvalho, T.: Image splicing detection through illumination inconsistencies and deep learning. In: 25th IEEE International Conference on Image Processing (ICIP), pp. 3788–3792 (2018)

    Google Scholar 

  80. Rhee, K.H.: Detection of spliced image forensics using texture analysis of median filter residual. IEEE Access. 8, 103374–103384 (2020)

    Article  Google Scholar 

  81. Salloum, R., Ren, Y., Jay Kuo, C.C.: Image splicing localization using a multi-task fully convolutional network (MFCN). J. Vis. Commun. Image Represent. 51, 201–209 (2018)

    Article  Google Scholar 

  82. Sharma, S., Ghanekar, U.: Spliced image classification and tampered region localization using local directional pattern. Int. J. Image, Graph. Signal Process. 11, 35–42 (2019)

    Google Scholar 

  83. Shen, X., Shi, Z., Chen, H.: Splicing image forgery detection using textural features based on the grey level co-occurrence matrices. IET Image Process. 11, 44–53 (2017)

    Article  Google Scholar 

  84. Srivastava, V., Yadav, S.K.: Texture operator based digital image splicing detection using ELTP technique. In: 9th International Conference System Modeling and Advancement in Research Trends (SMART), pp. 345–348 (2020)

    Google Scholar 

  85. Tiwari, D., Tyagi, V.: Dynamic texture recognition using multiresolution edge-weighted local structure pattern. Comput. Electr. Eng. 62, 485–498 (2017)

    Article  Google Scholar 

  86. Tripathi, E., Kumar, U., Tripathi, S.P., Yadav, S.: Automated image splicing detection using texture based feature criterion and fuzzy support vector machine based classifier. In: 2019 International Conference on Cutting-edge Technologies in Engineering, ICon-CuTE 2019, pp. 81–86 (2019)

    Google Scholar 

  87. Tyagi, V.: Understanding Digital Image Processing. CRC Press, London (2018)

    Google Scholar 

  88. Vidyadharan, D.S., Thampi, S.M.: Digital image forgery detection using compact multi-texture representation. J. Intell. Fuzzy Syst. 32, 3177–3188 (2017)

    Article  Google Scholar 

  89. Wang, J., Li, Y.: Splicing image and its localization: a survey. J. Inf. Hiding Priv. Prot. 1, 77–86 (2019)

    Google Scholar 

  90. Wang, J., Liu, R., Wang, H., Wu, B., Shi, Y.: Quaternion Markov splicing detection for color images based on quaternion discrete cosine transform. KSII Trans. Internet Inf. Syst. 14, 2981–2996 (2020)

    Google Scholar 

  91. Wang, J., Ni, Q., Liu, G., Luo, X., Kr, S.: Image splicing detection based on convolutional neural network with weight combination strategy. J. Inf. Secur. Appl. 54, 102523 (2020)

    Google Scholar 

  92. Wang, R., et al.: Digital image splicing detection based on Markov features in QDCT and QWT domain. Int. J. Digit. Crime Forensics. 10, 61–79 (2018)

    Google Scholar 

  93. Wang, X., Zhang, Q., Jiang, C., Zhang, Y.: Coarse-to-fine grained image splicing localization method based on noise level inconsistency. In: 2020 International Conference on Computing, pp. 79–83 (2020)

    Google Scholar 

  94. Warif, N.B.A., et al.: Copy-move forgery detection: survey, challenges and future directions. J. Netw. Comput. Appl. 75, 259–278 (2016)

    Google Scholar 

  95. Wei, Y., Wang, Z., Xiao, B., Liu, X., Yan, Z., Ma, J.: Controlling neural learning network with multiple scales for image splicing forgery detection. ACM Trans. Multimed. Comput. Commun. Appl. 16, 1–22 (2020)

    Google Scholar 

  96. Wu, J., Chang, X., Yang, T., Feng, K.: Blind forensic method based on convolutional neural networks for image splicing detection. In: 2019 IEEE 5th International Conference on Computer Communication, ICCC 2019, pp. 2014–2018 (2019)

    Google Scholar 

  97. Wu, Y., Abdalmageed, W., Natarajan, P.: ManTra-Net: manipulation tracing network for detection and localization of image forgeries with anomalous features. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 9543–9552 (2019)

    Google Scholar 

  98. Xiao, B., Wei, Y., Bi, X., Li, W., Ma, J.: Image splicing forgery detection combining coarse to refined convolutional neural network and adaptive clustering. Inf. Sci. (Ny) 511, 172–191 (2019)

    Article  MathSciNet  Google Scholar 

  99. Hsu, Y. F., Chang, S.F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: International Conference, pp. 549–552 (2006)

    Google Scholar 

  100. Yao, H., Xu, M., Qiao, T., Wu, Y., Zheng, N.: Image forgery detection and localization via a reliability fusion map. Sensors (Switzerland) 20, 1–18 (2020)

    Google Scholar 

  101. Ye, K., Dong, J., Wang, W., Peng, B., Tan, T.: Feature pyramid deep matching and localization network for image forensics. In: 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2018 – Proceedings, pp. 1796–1802 (2019)

    Google Scholar 

  102. Yildirim, E.O.Ş.: Image splicing detection with DWT domain extended markov features. In: 26th Signal Processing and Communications Applications Conference (SIU), pp. 3–6 (2010)

    Google Scholar 

  103. Yıldırım, E.O., Uluta, G.: Augmented features to detect image splicing on SWT domain. Expert Syst. Appl. 131, 81–93 (2019)

    Article  Google Scholar 

  104. Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Large-scale evaluation of splicing localization algorithms for web images. Multimed. Tools Appl. 76(4), 4801–4834 (2016). https://doi.org/10.1007/s11042-016-3795-2

    Article  Google Scholar 

  105. Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Detecting image splicing in the wild (Web ). In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6 (2015)

    Google Scholar 

  106. Zeng, H., Peng, A., Lin, X.: Exposing image splicing with inconsistent sensor noise levels. Multimed. Tools Appl. 79(35–36), 26139–26154 (2020). https://doi.org/10.1007/s11042-020-09280-z

    Article  Google Scholar 

  107. Zeng, H., Zhan, Y., Kang, X., Lin, X.: Image splicing localization using PCA-based noise level estimation. Multimed. Tools Appl. 76(4), 4783–4799 (2016). https://doi.org/10.1007/s11042-016-3712-8

    Article  Google Scholar 

  108. Zhang, Q., Lu, W., Wang, R., Li, G.: Digital image splicing detection based on Markov features in block DWT domain. Multimed. Tools Appl. 77(23), 31239–31260 (2018). https://doi.org/10.1007/s11042-018-6230-z

    Article  Google Scholar 

  109. Zhang, Y., Zhang, J., Xu, S.: A hybrid convolutional architecture for accurate image manipulation localization at the pixel-level. Multimed. Tools Appl. 80(15), 23377–23392 (2021). https://doi.org/10.1007/s11042-020-10211-1

    Article  Google Scholar 

  110. Zhang, Z., Zhang, Y., Zhou, Z., Luo, J.: Boundary-based image forgery detection by fast shallow CNN. arXiv:2658-2663 (2018)

  111. Zhu, N., Li, Z.: Blind image splicing detection via noise level function. Signal Process. Image Commun. 68, 181–192 (2018)

    Article  Google Scholar 

  112. Zou, M., Yao, H., Qin, C., Zhang, X.: Statistical analysis of signal-dependent noise : application in blind localization of image splicing forgery. arXiv Prepr. arXiv:2010.16211, pp. 1–16 (2020)

  113. Open Media Forensics Challenge. https://www.nist.gov/itl/iad/mig/open-media-forensics-challenge.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meena, K.B., Tyagi, V. (2021). Image Splicing Forgery Detection Techniques: A Review. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T., Sonawane, V.R. (eds) Advances in Computing and Data Sciences. ICACDS 2021. Communications in Computer and Information Science, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-030-88244-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88244-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88243-3

  • Online ISBN: 978-3-030-88244-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics