Abstract
GPS trajectory simplification algorithms are of great importance for GPS data analysis and processing. The correct selection of these algorithms in accordance with the type of trajectory to be analyzed facilitates the reduction of storage and processing space in data analysis. This paper analyzes the correlation between the compression ratio of GPS trajectory simplification algorithms and their margin of error. These metrics measure the effectiveness of simplification algorithms in general and this work focuses specifically on batch simplification. For this purpose, coordinates in GPS trajectories of different sets of data are used and the algorithms are executed on them, taking into account that the analysis performed for the simplification process takes into account the beginning and the end of each trajectory. Finally, the data obtained from the experiments are presented in tables and figures. The experiments show that TD-TR has better performance than Douglas-Peucker algorithm due to the selected variables.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Corcoran, P., Mooney, P., Huang, G.: Unsupervised trajectory compression. In: Proceedings - IEEE International Conference on Robotics and Automation, vol. 2016, pp. 3126–3132, June 2016. https://doi.org/10.1109/ICRA.2016.7487479
Ji, Y., Liu, H. , Liu, X., Ding, Y., Luo, W.: A comparison of road-network-constrained trajectory compression methods. In: Proceedings of the International Conference on Parallel and Distributed Systems - ICPADS, pp. 256–263 (2017). https://doi.org/10.1109/ICPADS.2016.0042
Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 1–41 (2015)
Muckell, J., Olsen, P.W., Hwang, J.H., Ravi, S.S., Lawson, C.T.: A framework for efficient and convenient evaluation of trajectory compression algorithms. In: Proceedings - 2013 4th International Conference on Computing for Geospatial Research and Application, COM.Geo 2013, pp. 24–31 (2013). https://doi.org/10.1109/COMGEO.2013.5
Salomon, D.: Data Compression: The Complete Reference. Springer, London (2007). https://doi.org/10.1007/978-1-84628-603-2
Gudmundsson, T.W.J., Katajainen, J., Merrick, D., Ong, C.: Compressing spatio-temporal trajectories. Comput. Geom. Theory Appl. 42(9), 825–841 (2009)
Lv, C., Chen, F., Xu, Y., Song, J., Lv, P.: A trajectory compression algorithm based on non-uniform quantization. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015, pp. 2469–2474 (2016). https://doi.org/10.1109/FSKD.2015.7382342
Zheng, Y., Zhou, X.: Computing with Spatial Trajectories. Springer (2011). https://doi.org/10.1007/978-1-4614-1629-6
Lin, X., Ma, S., Zhang, H., Wo, T., Huai, J.: One-pass error bounded trajectory simplification. Proc. VLDB Endow. 10(7), 841–852 (2017). https://doi.org/10.14778/3067421.3067432
Feldman, D., Sugaya, A., Rus, D.: An effective coreset compression algorithm for large scale sensor networks. In: IPSN’12 - Proceedings of the 11th International Conference on Information Processing in Sensor Networks, pp. 257–268 (2012). https://doi.org/10.1145/2185677.2185739
Hendawi, A.M., Khot, A., Rustum, A., Basalamah, A., Teredesai, A., Ali, M.: A map-matching aware framework for road network compression. In: Proceedings - IEEE International Conference on Mobile Data Management, vol. 1, pp. 307–310 (2015). https://doi.org/10.1109/MDM.2015.78
Song, R., Sun, W., Zheng, B., Zheng, Y.: A novel framework of trajectory compression in road networks. In: 40th International Conference on Very Large Data Bases, pp. 661–672 (2014). https://doi.org/10.14778/2732939.2732940
Van Hunnik, R.: Extensive comparison of trajectory simplification algorithms (2017)
Asif, M.T., Kannan, S., Dauwels, J., Jaillet, P.: Data compression techniques for urban traffic data. In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems, CIVTS 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013, pp. 44–49 (2013). https://doi.org/10.1109/CIVTS.2013.6612288
Meratnia, N., de By, R.A.: Spatiotemporal compression techniques for moving point objects. In: Bertino, E., et al. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 765–782. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24741-8_44
Lawson, C.T.: Compression and Mining of GPS Trace Data: New Techniques and Applications, New York (2011). http://www.utrc2.org/research/assets/202/Compression_and_Mining_of_GPS1.pdf
Reyes, G.: Algoritmo de compresión de trayectorias GPS basado en el algoritmo Top Down Time Ratio (TD-TR). In: 5to Congreso Científico Internacional Tecnología universidad sociedad, pp. 194–204 (2017)
de Vries, G.K.: Trajectory Compresion. University of Amsterdam (2011)
Sim, M., Kwak, J.-H., Lee, C.-H.: Fast shape matching algorithm based on the improved Douglas-Peucker algorithm. KIPS Trans. Softw. Data Eng. 5(10), 497–502 (2016). https://doi.org/10.3745/ktsde.2016.5.10.497
Wu, S., Silva, A.C.G., Márquez, M.R.G.: The Douglas-Peucker algorithm : sufficiency conditions for non-self-intersections. J. Brazilian Comput. Soc. 9, 1–17 (2004)
Wang, H.: Shark DB: An In-Memory Storage System for Large Scale Trajectory Data Management. The University of Queensland (2016)
Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of the smallest area. In: Cartographic Information Systems Research Group, July 1992
Koegel, M., Baselt, D., Mauve, M., Scheuermann, B.: A comparison of vehicular trajectory encoding techniques. In: 2011 the 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop, Med-Hoc-Net 2011, pp. 87–94 (2011). https://doi.org/10.1109/Med-Hoc-Net.2011.5970498
Zhang, S.K., Liu, Z.J., Cai, Y., Wu, Z.L., Shi, G.Y.: AIS trajectories simplification and threshold determination. J. Navig. 69(4), 729–744 (2016). https://doi.org/10.1017/S0373463315000831
Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification algorithm. ACM (1992)
Chen, M., Xu, M., Franti, P.: Compression of GPS trajectories. In: Data Compression Conference Proceedings, no. 61072146, pp. 62–71 (2012). https://doi.org/10.1109/DCC.2012.14
Zhang, D., Ding, M., Yang, D., Liu, Y., Fan, J., Shen, H.T.: Trajectory simplification: an experimental study and quality analysis. Proc. VLDB Endow., 934–946 (2018)
Muckell, J., Patil, V., Ping, F., Hwang, J.-H., Lawson, C.T., Ravi, S.S.: SQUISH: an online approach for GPS trajectory compression. In: Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications, 1–8 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Reyes, G., Maquilón, V., Estrada, V. (2021). Relationships of Compression Ratio and Error in Trajectory Simplification Algorithms. In: Valencia-García, R., Bucaram-Leverone, M., Del Cioppo-Morstadt, J., Vera-Lucio, N., Jácome-Murillo, E. (eds) Technologies and Innovation. CITI 2021. Communications in Computer and Information Science, vol 1460. Springer, Cham. https://doi.org/10.1007/978-3-030-88262-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-88262-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88261-7
Online ISBN: 978-3-030-88262-4
eBook Packages: Computer ScienceComputer Science (R0)