Skip to main content

An Analysis of ED Line Algorithm in Urban Street-View Dataset

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2021)

Abstract

Building detection in urban street view scenarios is becoming an important aspect of Computer Vision applications. In this paper we present an analysis of EDLine and Edge Drawing algorithms in a street-view dataset scenario when changing the first order derivative operator used inside the algorithms. To do so, we focused firstly on the general use case, using a natural image dataset, and secondly we looked on the effects we obtain on the use case of building detection in street view urban scenarios. We observed from our experiments that the proposed change brings marginal improvements to the algorithm that we present in the paper, visually and statistically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ziou, D., Tabbone, S.: Edge detection techniques: an overview. Int. J. Pattern Recognit. Image Anal. 4, 537–559 (1998)

    Google Scholar 

  2. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  3. Sobel, I., Feldman, G.: A 3\(\times \)3 isotropic gradient operator for image processing. Pattern Classif. Scene Anal. 271–272 (1973)

    Google Scholar 

  4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–8, 679–698 (1986)

    Article  Google Scholar 

  5. Zhang, Z., Xing, F., Shi, X., Yang, L.: Semicontour: a semi-supervised learning approach for contour detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 251–259 (2016)

    Google Scholar 

  6. Deng, R., Liu, S.: Deep structural contour detection. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 304–312 (2020)

    Google Scholar 

  7. Vert, S., Vasiu, R.: Relevant aspects for the integration of linked data in mobile augmented reality applications for tourism. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2014. CCIS, vol. 465, pp. 334–345. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11958-8_27

    Chapter  Google Scholar 

  8. Vasiu, R.: Development of smart city applications based on open data. In: Contribution to the 13th NETTIES Conference (Network Entities) on “Open Data and Big Data-The Impact on Digital Society and Smart Cities”, vol. 2. Humboldt Cosmos Multiversity, Tenerife (2015)

    Google Scholar 

  9. Vert, S., Andone, D., Vasiu, R.: Augmented and virtual reality for public space art. In: ITM Web of Conferences, vol. 29, p. 03006. EDP Sciences (2019)

    Google Scholar 

  10. Vert, S., Vasiu, R.: Integrating linked data in mobile augmented reality applications. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2014. CCIS, vol. 465, pp. 324–333. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11958-8_26

    Chapter  Google Scholar 

  11. Vert, S., Vasiu, R.: Augmented reality lenses for smart city data: the case of building permits. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 569, pp. 521–527. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56535-4_53

    Chapter  Google Scholar 

  12. Vert, S., Vasiu, R.: School of the future: using augmented reality for contextual information and navigation in academic buildings. In: 2012 IEEE 12th International Conference on Advanced Learning Technologies, pp. 728–729. IEEE (2012)

    Google Scholar 

  13. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  14. CM Building Dataset Timisoara. https://github.com/CipiOrhei/TMBuD. Accessed 12 Mar 2021

  15. Orhei, C., Vert, S., Mocofan, M., Vasiu, R.: TMBuD: a dataset for urban scene building detection. In: Lopata, A., Gudonien\(\dot{\rm e}\), D., Butkien\(\dot{\rm e}\), R. (eds.) ICIST 2021. CCIS, vol. 1486, pp. 251–262. Springer, Charm (2021). https://doi.org/10.1007/978-3-030-88304-1_20

  16. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley, Reading (1992)

    Google Scholar 

  17. Prewitt, J.M.: Object enhancement and extraction. In: Picture Processing and Psychopictorics, vol. 10, no. 1, pp. 15–19 (1970)

    Google Scholar 

  18. Kirsch, R.A.: Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4(3), 315–328 (1971)

    Article  Google Scholar 

  19. Kitchen, L., Malin, J.: The effect of spatial discretization on the magnitude and direction response of simple differential edge operators on a step edge. Comput. Vis. Graph. Image Process. 47(2), 243–258 (1989)

    Article  Google Scholar 

  20. Kawalec-Latała, E.: Edge detection on images of pseudoimpedance section supported by context and adaptive transformation model images. Studia Geotechnica et Mechanica 36(1), 29–36 (2014)

    Article  Google Scholar 

  21. Scharr, H.: Optimal operators in digital image processing. Ph.D. thesis (2000)

    Google Scholar 

  22. Kroon, D.: Numerical optimization of kernel based image derivatives, Short Paper University Twente (2009)

    Google Scholar 

  23. Orhei, C., Vert, S., Vasiu, R.: A novel edge detection operator for identifying buildings in augmented reality applications. In: Lopata, A., Butkienė, R., Gudonienė, D., Sukackė, V. (eds.) ICIST 2020. CCIS, vol. 1283, pp. 208–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59506-7_18

    Chapter  Google Scholar 

  24. Prieto, M., Allen, A.: A similarity metric for edge images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1265–1273 (2003)

    Article  Google Scholar 

  25. Sasaki, Y.: The truth of the f-measure. Technical report, School of Computer Science, University of Manchester (2007)

    Google Scholar 

  26. Orhei, C., Mocofan, M., Vert, S., Vasiu, R.: End-to-end computer vision framework. In: 2020 International Symposium on Electronics and Telecommunications (ISETC), pp. 1–4. IEEE (2020)

    Google Scholar 

  27. Orhei, C., Vert, S., Mocofan, M., Vasiu, R.: End-to-end computer vision framework: an open-source platform for research and education. Sensors 21(11), 3691 (2021)

    Article  Google Scholar 

  28. Topal, C., Akinlar, C.: Edge drawing: a combined real-time edge and segment detector. J. Vis. Commun. Image Represent. 23(6), 862–872 (2012)

    Article  Google Scholar 

  29. Haralick, R.M.: Digital step edges from zero crossing of second directional derivatives. In: Readings in Computer Vision, pp. 216–226. Elsevier (1987)

    Google Scholar 

  30. Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach, vol. 34. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-74378-3

    Book  MATH  Google Scholar 

  31. Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011)

    Article  Google Scholar 

  32. Bogdan, V., Bonchiş, C., Orhei, C.: Custom dilated edge detection filters (2020)

    Google Scholar 

  33. Orhei, C., Bogdan, V., Bonchiş, C.: Edge map response of dilated and reconstructed classical filters. In: 2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 187–194. IEEE (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian Orhei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orhei, C., Mocofan, M., Vert, S., Vasiu, R. (2021). An Analysis of ED Line Algorithm in Urban Street-View Dataset. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2021. Communications in Computer and Information Science, vol 1486. Springer, Cham. https://doi.org/10.1007/978-3-030-88304-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88304-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88303-4

  • Online ISBN: 978-3-030-88304-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics