Abstract
Building detection in urban street view scenarios is becoming an important aspect of Computer Vision applications. In this paper we present an analysis of EDLine and Edge Drawing algorithms in a street-view dataset scenario when changing the first order derivative operator used inside the algorithms. To do so, we focused firstly on the general use case, using a natural image dataset, and secondly we looked on the effects we obtain on the use case of building detection in street view urban scenarios. We observed from our experiments that the proposed change brings marginal improvements to the algorithm that we present in the paper, visually and statistically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ziou, D., Tabbone, S.: Edge detection techniques: an overview. Int. J. Pattern Recognit. Image Anal. 4, 537–559 (1998)
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A 2(7), 1160–1169 (1985)
Sobel, I., Feldman, G.: A 3\(\times \)3 isotropic gradient operator for image processing. Pattern Classif. Scene Anal. 271–272 (1973)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–8, 679–698 (1986)
Zhang, Z., Xing, F., Shi, X., Yang, L.: Semicontour: a semi-supervised learning approach for contour detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 251–259 (2016)
Deng, R., Liu, S.: Deep structural contour detection. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 304–312 (2020)
Vert, S., Vasiu, R.: Relevant aspects for the integration of linked data in mobile augmented reality applications for tourism. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2014. CCIS, vol. 465, pp. 334–345. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11958-8_27
Vasiu, R.: Development of smart city applications based on open data. In: Contribution to the 13th NETTIES Conference (Network Entities) on “Open Data and Big Data-The Impact on Digital Society and Smart Cities”, vol. 2. Humboldt Cosmos Multiversity, Tenerife (2015)
Vert, S., Andone, D., Vasiu, R.: Augmented and virtual reality for public space art. In: ITM Web of Conferences, vol. 29, p. 03006. EDP Sciences (2019)
Vert, S., Vasiu, R.: Integrating linked data in mobile augmented reality applications. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2014. CCIS, vol. 465, pp. 324–333. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11958-8_26
Vert, S., Vasiu, R.: Augmented reality lenses for smart city data: the case of building permits. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 569, pp. 521–527. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56535-4_53
Vert, S., Vasiu, R.: School of the future: using augmented reality for contextual information and navigation in academic buildings. In: 2012 IEEE 12th International Conference on Advanced Learning Technologies, pp. 728–729. IEEE (2012)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)
CM Building Dataset Timisoara. https://github.com/CipiOrhei/TMBuD. Accessed 12 Mar 2021
Orhei, C., Vert, S., Mocofan, M., Vasiu, R.: TMBuD: a dataset for urban scene building detection. In: Lopata, A., Gudonien\(\dot{\rm e}\), D., Butkien\(\dot{\rm e}\), R. (eds.) ICIST 2021. CCIS, vol. 1486, pp. 251–262. Springer, Charm (2021). https://doi.org/10.1007/978-3-030-88304-1_20
Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley, Reading (1992)
Prewitt, J.M.: Object enhancement and extraction. In: Picture Processing and Psychopictorics, vol. 10, no. 1, pp. 15–19 (1970)
Kirsch, R.A.: Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4(3), 315–328 (1971)
Kitchen, L., Malin, J.: The effect of spatial discretization on the magnitude and direction response of simple differential edge operators on a step edge. Comput. Vis. Graph. Image Process. 47(2), 243–258 (1989)
Kawalec-Latała, E.: Edge detection on images of pseudoimpedance section supported by context and adaptive transformation model images. Studia Geotechnica et Mechanica 36(1), 29–36 (2014)
Scharr, H.: Optimal operators in digital image processing. Ph.D. thesis (2000)
Kroon, D.: Numerical optimization of kernel based image derivatives, Short Paper University Twente (2009)
Orhei, C., Vert, S., Vasiu, R.: A novel edge detection operator for identifying buildings in augmented reality applications. In: Lopata, A., Butkienė, R., Gudonienė, D., Sukackė, V. (eds.) ICIST 2020. CCIS, vol. 1283, pp. 208–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59506-7_18
Prieto, M., Allen, A.: A similarity metric for edge images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1265–1273 (2003)
Sasaki, Y.: The truth of the f-measure. Technical report, School of Computer Science, University of Manchester (2007)
Orhei, C., Mocofan, M., Vert, S., Vasiu, R.: End-to-end computer vision framework. In: 2020 International Symposium on Electronics and Telecommunications (ISETC), pp. 1–4. IEEE (2020)
Orhei, C., Vert, S., Mocofan, M., Vasiu, R.: End-to-end computer vision framework: an open-source platform for research and education. Sensors 21(11), 3691 (2021)
Topal, C., Akinlar, C.: Edge drawing: a combined real-time edge and segment detector. J. Vis. Commun. Image Represent. 23(6), 862–872 (2012)
Haralick, R.M.: Digital step edges from zero crossing of second directional derivatives. In: Readings in Computer Vision, pp. 216–226. Elsevier (1987)
Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach, vol. 34. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-74378-3
Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011)
Bogdan, V., Bonchiş, C., Orhei, C.: Custom dilated edge detection filters (2020)
Orhei, C., Bogdan, V., Bonchiş, C.: Edge map response of dilated and reconstructed classical filters. In: 2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 187–194. IEEE (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Orhei, C., Mocofan, M., Vert, S., Vasiu, R. (2021). An Analysis of ED Line Algorithm in Urban Street-View Dataset. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2021. Communications in Computer and Information Science, vol 1486. Springer, Cham. https://doi.org/10.1007/978-3-030-88304-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-88304-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88303-4
Online ISBN: 978-3-030-88304-1
eBook Packages: Computer ScienceComputer Science (R0)