Skip to main content

Fast ObjectRank for Large Knowledge Databases

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2021 (ISWC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12922))

Included in the following conference series:

  • 3599 Accesses

Abstract

ObjectRank is an essential tool to evaluate an importance of nodes for a user-specified query in heterogeneous graphs. However, existing methods are not applicable to massive graphs because they iteratively compute all nodes and edges. This paper proposes SchemaRank, which detects the exact top-k important nodes for a given query within a short running time. SchemaRank dynamically excludes unpromising nodes and edges, ensuring that it detects the same top-k important nodes as ObjectRank. Our extensive evaluations demonstrate that the running time of SchemaRank outperforms existing methods by up to two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    ObjectRank can easily handle updates of graphs (e.g., nodes/edges insertion or deletion, and changes of weights) by using the Gauss-Southwell algorithm. Thus, this work does not consider such updates.

  2. 2.

    All datasets are publickly available at https://aminer.org/citation.

References

  1. Chakrabarti, S.: Dynamic personalized pagerank in entity-relation graphs. In: Proceedings of the 16th International Conference on World Wide Web (WWW), pp. 571–580 (2007)

    Google Scholar 

  2. Fang, H., Wu, F., Zhao, Z., Duan, X., Zhuang, Y.: Community-based question answering via heterogeneous social network learning. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), pp. 122–128 (2016)

    Google Scholar 

  3. Fazzinga, B., Gianforme, G., Gottlob, G., Lukasiewicz, T.: Semantic Web Search based on Ontological Conjunctive Queries. Journal of Web Semantics 9(4), 453–473 (2011)

    Article  Google Scholar 

  4. Fu, T.Y., Lee, W.C., Lei, Z.: HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 26th ACM International Conference on Information and Knowledge Management (CIKM), pp. 1797–1806 (2017)

    Google Scholar 

  5. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Mishima, T., Onizuka, M.: Efficient ad-hoc search for personalized PageRank. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 445–456 (2013)

    Google Scholar 

  6. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Mishima, T., Onizuka, M.: Fast and exact top-k algorithm for PageRank. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013), pp. 1106–1112 (2013)

    Google Scholar 

  7. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Onizuka, M.: Efficient search algorithm for SimRank. In: Proceedings of the 29th IEEE International Conference on Data Engineering (ICDE), pp. 589–600 (2013)

    Google Scholar 

  8. Golub, G., Van Loan, C.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2012)

    MATH  Google Scholar 

  9. Hristidis, V., Hwang, H., Papakonstantinou, Y.: Authority-based keyword search in databases. ACM Trans. Database Syst. 33(1) (2008)

    Google Scholar 

  10. Hwang, H., Balmin, A., Reinwald, B., Nijkamp, E.: BinRank: scaling dynamic authority-based search using materialized subgraphs. IEEE Trans. Knowl. Data Eng. 22(8), 1176–1190 (2010)

    Article  Google Scholar 

  11. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 538–543 (2002)

    Google Scholar 

  12. Jiang, Z., Liu, H., Fu, B., Wu, Z., Zhang, T.: Recommendation in heterogeneous information networks based on generalized random walk model and Bayesian personalized ranking. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM), pp. 288–296 (2018)

    Google Scholar 

  13. Komamizu, T.: Learning interpretable entity representation in linked data. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11029, pp. 153–168. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98809-2_10

    Chapter  Google Scholar 

  14. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press (2012)

    Google Scholar 

  15. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  16. Li, B., King, I.: Routing questions to appropriate answerers in community question answering services. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM), pp. 1585–1588 (2010)

    Google Scholar 

  17. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  18. Robertson, S.: A New Interpretation of Average Precision. In: Proceedings of the 31st Annual International ACM SIGIR Conference (SIGIR), pp. 689–690 (2008)

    Google Scholar 

  19. Sakakura, Y., Yamaguchi, Y., Amagasa, T., Kitagawa, H.: A local method for ObjectRank estimation. In: Proceedings of the 15th International Conference on Information Integration and Web-based Applications and Services (iiWAS), pp. 92:92–92:101 (2013)

    Google Scholar 

  20. Sato, T., Shiokawa, H., Yamaguchi, Y., Kitagawa, H.: FORank: fast ObjectRank for large heterogeneous graphs. In: Companion Proceedings of The Web Conference (WWW), pp. 103–104 (2018)

    Google Scholar 

  21. Shiokawa, H.: Scalable affinity propagation for massive datasets. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2021), vol. 35, no. (11), pp. 9639–9646, May 2021

    Google Scholar 

  22. Shiokawa, H., Amagasa, T., Kitagawa, H.: Scaling fine-grained modularity clustering for massive graphs. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), pp. 4597–4604 (2019)

    Google Scholar 

  23. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web (WWW), pp. 697–706 (2007)

    Google Scholar 

  24. Sun, J., Qu, H., Chakrabarti, D., Faloutsos, C.: Neighborhood formation and anomaly detection in bipartite graphs. In: Proceedings of the 5th IEEE International Conference on Data Mining (ICDM), pp. 418–425 (2005)

    Google Scholar 

  25. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 990–998 (2008)

    Google Scholar 

  26. Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solutions. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 404–413 (2006)

    Google Scholar 

  27. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: VERSE: versatile graph embeddings from similarity measures. In: Proceedings of the 2018 World Wide Web Conference (WWW), pp. 539–548 (2018)

    Google Scholar 

  28. Wan, L., Lou, W., Abner, E., Kryscio, R.J.: A comparison of time-homogeneous Markov chain and Markov process multi-state models. Commun. Stat. Case Stud. Data Anal. Appl. 2(3–4), 92–100 (2016)

    Google Scholar 

  29. Yu, D.L., Ma, Y.L., Yu, Z.G.: Inferring MicroRNA-disease association by hybrid recommendation algorithm and unbalanced bi-random walk on heterogeneous network. Sci. Rep. 9(2474) (2019)

    Google Scholar 

  30. Zhao, Z., Lu, H., Cai, D., He, X., Zhuang, Y.: Microblog sentiment classification via recurrent random walk network learning. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 3532–3538 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by JSPS KAKENHI Early-Career Scientists (Grant Number JP18K18057) and JST PRESTO JPMJPR2033, Japan. I thank to Hiroyuki Kitagawa, Toshiyuki Amagasa, and Tomoki Sato for their helps and insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Shiokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shiokawa, H. (2021). Fast ObjectRank for Large Knowledge Databases. In: Hotho, A., et al. The Semantic Web – ISWC 2021. ISWC 2021. Lecture Notes in Computer Science(), vol 12922. Springer, Cham. https://doi.org/10.1007/978-3-030-88361-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88361-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88360-7

  • Online ISBN: 978-3-030-88361-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics