Abstract
Relation linking is essential to enable question answering over knowledge bases. Although there are various efforts to improve relation linking performance, the current state-of-the-art methods do not achieve optimal results, therefore, negatively impacting the overall end-to-end question answering performance. In this work, we propose a novel approach for relation linking framing it as a generative problem facilitating the use of pre-trained sequence-to-sequence models. We extend such sequence-to-sequence models with the idea of infusing structured data from the target knowledge base, primarily to enable these models to handle the nuances of the knowledge base. Moreover, we train the model with the aim to generate a structured output consisting of a list of argument-relation pairs, enabling a knowledge validation step. We compared our method against the existing relation linking systems on four different datasets derived from DBpedia and Wikidata. Our method reports large improvements over the state-of-the-art while using a much simpler model that can be easily adapted to different knowledge bases.
G. Rossiello and N. Mihindukulasooriya—Equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In the encoder-decoder representations, we consider only the relation names or labels by removing the URIs and namespaces for DBpedia and converting the property ID to the corresponding relation label for Wikidata. The knowledge validation module converts the relation labels back to URIs.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
References
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: The Semantic Web, pp. 722–735 (2007)
Cao, N.D., Izacard, G., Riedel, S., Petroni, F.: Autoregressive entity retrieval. CoRR abs/2010.00904 (2020)
Chen, Y., Li, H., Hua, Y., Qi, G.: Formal query building with query structure prediction for complex question answering over knowledge base. In: International Joint Conference on Artificial Intelligence (IJCAI) (2020)
Diefenbach, D., Tanon, T.P., Singh, K.D., Maret, P.: Question answering benchmarks for wikidata. In: Proceedings of the ISWC 2017 Posters and Demonstrations and Industry Tracks Co-located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, 23–25 October 2017 (2017). http://ceur-ws.org/Vol-1963/paper555.pdf
Dubey, M., Banerjee, D., Abdelkawi, A., Lehmann, J.: LC-QuAD 2.0: a large dataset for complex question answering over Wikidata and DBpedia. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 69–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_5
Dubey, M., Banerjee, D., Chaudhuri, D., Lehmann, J.: EARL: joint entity and relation linking for question answering over knowledge graphs. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 108–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_7
Hu, S., Zou, L., Yu, J.X., Wang, H., Zhao, D.: Answering natural language questions by subgraph matching over knowledge graphs. IEEE Trans. Knowl. Data Eng. 30(5), 824–837 (2017)
Kapanipathi, P., et al.: Leveraging abstract meaning representation for knowledge base question answering. Findings of the Association for Computational Linguistics: ACL (2021)
Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL, pp. 7871–7880. Association for Computational Linguistics (2020)
Lewis, P.S.H., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. In: NeurIPS (2020)
Lin, X., Li, H., Xin, H., Li, Z., Chen, L.: KBPearl: a knowledge base population system supported by joint entity and relation linking. Proc. VLDB Endow. 13(7), 1035–1049 (2020)
Lukovnikov, D., Fischer, A., Lehmann, J.: Pretrained transformers for simple question answering over knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 470–486. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_27
Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A., Lehmann, J.: Learning to rank query graphs for complex question answering over knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 487–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_28
Mihindukulasooriya, N., et al.: Leveraging semantic parsing for relation linking over knowledge bases. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_23
Mulang, I.O., Singh, K., Orlandi, F.: Matching natural language relations to knowledge graph properties for question answering. SEMANTiCS 2017, 89–96 (2017)
Pan, J.Z., Zhang, M., Singh, K., Harmelen, F., Gu, J., Zhang, Z.: Entity enabled relation linking. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 523–538. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_30
Petroni, F., et al.: KILT: a benchmark for knowledge intensive language tasks. CoRR abs/2009.02252 (2020)
Sakor, A., et al.: Old is gold: linguistic driven approach for entity and relation linking of short text. In: NAACL: HLT 2019, pp. 2336–2346 (2019)
Sakor, A., Singh, K., Patel, A., Vidal, M.E.: Falcon 2.0: An entity and relation linking tool over wikidata. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3141–3148 (2020)
Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-quad: a corpus for complex question answering over knowledge graphs. ISWC 2017, 210–218 (2017)
Usbeck, R., Gusmita, R.H., Ngomo, A.N., Saleem, M.: 9th challenge on question answering over linked data (QALD-9) (invited paper). In: Semdeep/NLIWoD@ISWC. CEUR Workshop Proceedings, vol. 2241, pp. 58–64 (2018). CEUR-WS.org
Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)
Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6397–6407. Association for Computational Linguistics, November 2020
Yu, M., Yin, W., Hasan, K.S., dos Santos, C.N., Xiang, B., Zhou, B.: Improved neural relation detection for knowledge base question answering. ACL 2017, 571–581 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Rossiello, G. et al. (2021). Generative Relation Linking for Question Answering over Knowledge Bases. In: Hotho, A., et al. The Semantic Web – ISWC 2021. ISWC 2021. Lecture Notes in Computer Science(), vol 12922. Springer, Cham. https://doi.org/10.1007/978-3-030-88361-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-88361-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88360-7
Online ISBN: 978-3-030-88361-4
eBook Packages: Computer ScienceComputer Science (R0)