
GENERATIVE RELATION LINKING FOR QUESTION ANSWERING
OVER KNOWLEDGE BASES

A PREPRINT

Gaetano Rossiello∗ Nandana Mihindukulasooriya* Ibrahim Abdelaziz Mihaela Bornea

Alfio Gliozzo Tahira Naseem Pavan Kapanipathi

IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA

ABSTRACT

Relation linking is essential to enable question answering over knowledge bases. Although there are
various efforts to improve relation linking performance, the current state-of-the-art methods do not
achieve optimal results, therefore, negatively impacting the overall end-to-end question answering
performance. In this work, we propose a novel approach for relation linking framing it as a generative
problem facilitating the use of pre-trained sequence-to-sequence models. We extend such sequence-to-
sequence models with the idea of infusing structured data from the target knowledge base, primarily
to enable these models to handle the nuances of the knowledge base. Moreover, we train the model
with the aim to generate a structured output consisting of a list of argument-relation pairs, enabling a
knowledge validation step. We compared our method against the existing relation linking systems on
four different datasets derived from DBpedia and Wikidata. Our method reports large improvements
over the state-of-the-art while using a much simpler model that can be easily adapted to different
knowledge bases.

1 Introduction

The goal of Knowledge Base Question Answering (KBQA) systems is to transform natural language questions into
SPARQL queries that are then used to retrieve answer(s) from the target Knowledge Base (KB). Relation linking is a
crucial component in building KBQA systems. It identifies the relations expressed in the question and maps them to the
corresponding KB relations. For example, in Figure 1, to translate the question “What is the owning organization of the
Ford Kansas City Assembly Plant and also the builder of the Ford Y-block engine?” into its corresponding SPARQL
query, it is necessary to determine the two KB relations: dbo:owningOrganisation, dbo:manufacturer.

Relation linking has proven to be a challenging problem, with state-of-the-art approaches performing less than 50% F1
on the majority of the datasets Sakor et al. [2019], Lin et al. [2020], Mihindukulasooriya et al. [2020], thus making it a
bottleneck for the overall performance of KBQA systems. The challenges primarily arise from the following factors: 1)
relations in text and the KB are often lexicalized differently (implicit mentions); 2) questions with multiple relations and
3) training data is often limited. While past approaches have tried to tackle these issues by either creating hand-coded
rules Sakor et al. [2020], or by using semantic parsing Mihindukulasooriya et al. [2020], these challenges can be
naturally addressed using the latest advances in auto-regressive sequence-to-sequence models (seq2seq) which have
been shown to perform surprisingly well on tasks such as question answering Lewis et al. [2020a], slot filling Petroni
et al. [2020] or entity linking Cao et al. [2020], in a generative fashion. However, seq2seq models have not yet been
explored for relation linking, particularly in the context of KBQA. In this work, we introduce GenRL, a novel generative
approach for relation linking that capitalises on pre-trained seq2seq models.

∗Equal contributions

ar
X

iv
:2

10
8.

07
33

7v
1

 [
cs

.C
L

]
 1

6
A

ug
 2

02
1

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

Figure 1: An example taken from LC-QuAD 1.0 showing the difference between KBQA and RL tasks. Knowledge
Base Question Answering (on the top): given the question, predict the gold SPARQL query. Relation Linking (on the
bottom): given the question, predict the KB relations dbo:owningOrganisation, dbo:manufacturer.

A simple seq2seq model for relation linking can be trained using just the question text to generate a sequence of
relations. However, such models, trained on only the question text, are unable to deal with the nuances of the knowledge
bases when determining and linking relations from text. Therefore, we further extend this model by introducing
knowledge integration and validation mechanisms. Knowledge integration enhances the encoder representation by
infusing structured data from the KB, consisting of a set of relation candidates connected with the entities pre-identified
in the questions. Such knowledge integration can have a two-fold advantage: (a) enhancing the performance of the
relation linking model when there is a lack of training data by using information from the knowledge graph; (b) ability
to deal with unseen relations since it is transformed into a re-ranking task.

The main contributions of this work are as follows:

• a novel generative model for relation linking in the context of KBQA;

• a knowledge integration that enhances the model with information from the knowledge base to handle unseen
relations and a knowledge validation module to further filter, disambiguate and re-rank the relations generated
by the seq2seq model;

• an extensive experimental evaluation on four KBQA datasets showing large improvements over the state-of-
the-art. We obtain an F1 increase between 9%− 59% over the state-of-the-art on different datasets derived
from knowledge bases such as DBpedia and Wikidata.

2 GenRL: Generative Relation Linking

In this section, we describe GenRL, our generative method for relation linking. Our approach is based on an encoder-
decoder paradigm where a model is trained to transform a sequence of input tokens into a sequence of target tokens.
Formally, let us define S = [s1, ..., sN] as the source sequence given as input to the encoder, and T = [t1, ..., tM] as the
target sequence generated by the decoder.

The probability of the target sequence is defined as: P (T |S) =
∏M

k=1(P (tk|t<k, S)).

The probability of generating the token tk at step k is conditioned on the entire source sequence as well as the tokens
that have been generated so far by the decoder on the target side. In a straight forward application of seq2seq models
for relation liking, the input would be the question text and the output would be a sequence of KB relations. In GenRL,
we adopt BART Lewis et al. [2020b], a pre-trained seq2seq language model based on the transformer Vaswani et al.
[2017] architecture, with two main components: a bi-directional encoder and a left-to-right decoder. BART achieves
remarkable performance when fine-tuned on sequence generation tasks, making it a good candidate for our problem.

Figure 2 shows a high-level overview of the GenRL architecture. The system takes a natural language question as input.
A necessary first step in our approach is to recognise the entities in the question and link them to the target KB using an
entity linking system. The Knowledge Integration module (Section 2.1) aims to query the KB, enrich the question with
a list of candidate relations according to the detected entities, and prepare the encoder representation for the seq2seq
model. The decoder of seq2seq model generates a structured sequence consisting of a list of argument-relation pairs,
based on the enriched input representation (see Section 2.2 for details). Finally, the Knowledge Validation module
(Section 2.3), analyses the top-k most probable relation sequences generated by the model, and uses the argument
values for the relations in the sequence to determine if the sequence is consistent with the KB content.

2

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

Figure 2: GenRL Framework

2.1 Encoder Input Representation

Given a question as input, the Knowledge Integration module extracts additional information from the KB to prepare
the encoder representation for the seq2seq model, as shown in Figure 3. In order to allow access to the KB, we first
identify and link the entities in the question using an entity linker. In our case, we used BLINK combined with a
neural mention detection model Wu et al. [2020]. For each linked entity, we build a text structure comprised of the
entity mention in question, the entity type defined in the KB ontology and a list of relations2 directly connected with
the entity: [Entity mention | Entity type | Rel1, ..., RelN]. The entity structure for all entities in the
question is concatenated with the natural language question. When an entity is typed with multiple classes, we use the
class hierarchy information to find the most specific type that will prune all the generic types. If there are more than one
classes after pruning, the class with most instances in the KG is used.

This new representation has three advantages: 1) it provides detected entities explicitly to the model; 2) enriches the
encoder with local information about the entities in the question, such as their types; 3) it provides a pre-built list
of relations used as possible candidates. With this enriched representation, we observe an increased generalisation
capability of the seq2seq model showing better performance. Moreover, this representation assists the model in
generating relations that have not been seen during training by exposing the model to a list of candidate relations from
the KB. This is helpful especially for those relation type labels which have a lexical gap with the text in the question.

However, BART’s encoder can handle only a limited number of tokens (i.e 512) and the entity data structures may
exceed this limit when there is a high number of distinct relations connected to the entities. In order to address this issue,
we pre-rank the relations for each entity in the question using the word embedding similarity technique between the
question and the relation labels similar to the lexical similarity approach described in Mihindukulasooriya et al. [2020].

2.2 Decoder Output Representation

We design the target sequence for the decoder using a data structure formatted as follows: [Arg1 | Rel1], ...,
[ArgN | RelN]. For each predicted relation, the model also generates one of its arguments. The relation arguments
can be KB entities that appear in the question, or placeholders for answer variable or unbound intermediate variables for
multi-hop relations in the query. In the first case, we train the seq2seq model in order to generate the entities recognised
in the question paired with the corresponding KB relations. In the example in Figure 3, the model generated entity Ford

2In the encoder-decoder representations, we consider only the relation names or labels by removing the URIs and namespaces for
DBpedia and converting the property ID to the corresponding relation label for Wikidata. The knowledge validation module converts
the relation labels back to URIs.

3

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

Figure 3: Input-Output representations for the sequence-to-sequence model

Figure 4: Knowledge Validation example for a sequence of entity-relation pairs. This shows how the first decoder
output sequence from Figure 3 is validated.

Kansas City Assembly Plant as an argument for the relation owningOrganisation and the entity Ford Y-block engine as
an argument for the relation manufacturer.

In the second case, the model generates placeholders for unbound variables. We show such an example in see Figure 5,
where the relation dbo:owner is not directly connected with any entities in the question. Our strategy is to pair these
multi-hop relations with the question Wh terms (i.e. Who) used as a placeholder. We use the gold SPARQL queries in
the training set to generate this output for training the model.

2.3 Knowledge Validation

During knowledge validation the system analyses each candidate output sequence produced by the decoder. In this
phase we map the arguments (entity mentions or Wh terms) back to entity URIs or variables, use them to validate
candidate outputs and convert the relation labels into URIs in the KB ontology with the correct namespaces.

We collect all the argument-relation pairs for a given output sequence and build all possible graphs that are subsequently
used to query the KB. If one of the resulting graphs is matched in the KB then we consider the predicted sequence
is valid. We discard the sequences that the model produces in cases when none of the graphs is matched in the KB.
Building all possible graphs based on the argument-relation pair uses the following set of heuristics:

4

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

Figure 5: Knowledge validation example for a sequence of entity-relation and placeholder-relation pairs

2.3.1 Entity-Relation Heuristics.

We expand each entity-relation pair into triples by first considering the possible namespaces for the predicted relation
labels. For the case of DBpedia, the namespaces are dbo:3 and dbp:4. Next, we consider two triples where the entity is
either in the subject or object position. To complete the triple, we use an unbound variable ?x to indicate the missing
argument. To create a single connected graph, entity-relation pairs in the same candidate sequence use the same
unbound variable ?x across all triples. Each entity-relation pair creates four triples and cartesian product of triples from
each entity-relation pair creates all possible candidate graphs. In order to make this process efficient, we prune the
invalid single triples first before expanding with product to create candidate graphs. Furthermore, it follows decoder
ranking and stops as soon as the first valid candidate graph is found. Finally in Figure 4 we show two possible candidate
graphs for a given model output. The first graph has a match in the KB which validates the sequence produced by
the model. The KB triples that match the first graph are shown at the bottom of Figure 4. In the example in Figure 3,
we validate the decoder sequence on the first position. In cases where the first generated relation sequence can not be
validated against the KB (because none of its graphs is matched), we proceed to the next generated sequence and the
process stops as soon as the first valid sequence is found.

2.3.2 Placeholder-Relation Heuristics.

We expand each placeholder-relation pair into triples similarly to entity-relation pairs. In this case, the placeholder
is replaced with a new unbound variable ?y to represent the unknown or the answer. We complete the triple with the
unbound variable ?x similar to the previous case to connect the triples to each other and create a set of candidate graphs.

In the example in Figure 5 we show two possible graphs for the first sequence generated by the model, with one
placeholder-relation pair. The first graph is matched by the KB content and we show the matching triples in the figure.
Since at least one of the graphs we produced for the output sequence has been matched, the output system is valid and
relation labels can be converted to their corresponding URIs. It is worth noting though that this process of only using
two unbound variables does not scale well to arbitrarily long questions with a large number of triples and we plan to
investigate it as our future work.

We validate the top N query candidates according to the ranking order of the decoder sequentially (N = 50 in our
experiments). The KG validation phase stops once we find a valid candidate query graph with matching triples in the
KB. Thus, if there are other valid graphs with lower confidence at lower ranks in the decoder, they will be automatically
ignored.

In the previous example we explained the process using DBpedia as the KB. As for Wikidata, we have followed a similar
process but due to complexities of the Wikidata model, it requires handing reified statements and qualifier properties
using several other patterns. In contrast to DBpedia, relations can be either connected to entities directly (wdt:5) or
through reified statements (p:6,ps:7, pq:8). For example, qualifier relations are only associated with statements and some

3http://dbpedia.org/ontology/
4http://dbpedia.org/property/
5http://www.wikidata.org/prop/direct/
6http://www.wikidata.org/prop/
7http://www.wikidata.org/prop/statement/
8http://www.wikidata.org/prop/qualifier/

5

http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://www.wikidata.org/prop/direct/
http://www.wikidata.org/prop/
http://www.wikidata.org/prop/statement/
http://www.wikidata.org/prop/qualifier/

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

specific relations such as “instance of (P31)" or “subclass of (P279)" is only attached to entities and not statements.
Once all SPARQL query variations are generated according to the Wikidata model, the validation process is similar to
one described for DBpedia.

KBQA datasets contain ASK questions that have to be treated differently because, by design, when the expected answer
is false such as “Was Barack Obama president of Canada?", these questions contain triple patterns that are not present
in the KG. We handle this by using two simple heuristics (a) Identify ASK questions using the question tokens, and (b)
train the decoder argument pairs for ASK to be “[E1 - RelA] [E2 - RelA]".

Once an ASK query is detected, GenRL relaxes the KV to adapt to possible false ASK questions using the following
strategy. In particular, we first try to validate top N decoder outputs (N=10, in our experiments) assuming it’s an ASK
question with a True answer (i.e., a valid triple in the KB). Generally, as ASK triples have both entities bounded, a
positive validation gives a stronger signal. If none of the top n candidates are validated with KG, we return the top
decoder output assuming it’s an ASK question with a NO (False) answer.

3 Evaluation

In this section, we detail our experimental setup and evaluate our approach against the state-of-the-art KBQA relation
linking approaches. We adopt standard evaluation metrics such as precision, recall, and F1 on DBpedia and Wikidata
based KBQA datasets.

3.1 Experimental Setup

3.1.1 Benchmarks

We perform experiments on four datasets targeting two popular KBs, DBpedia and Wikidata. Each question in these
datasets comes with its corresponding SPARQL query, annotated with gold relations. In particular, we used the
following datasets:

• QALD-9 Usbeck et al. [2018]: is a dataset based on the DBpedia (2016-04 version) with 408 training questions
and 150 test questions in natural language. The questions and the gold SPARQL queries are manually created.

• LC-QuAD 1.0 Trivedi et al. [2017]: is another dataset based on DBpedia (2016-10 version) with a total of
5,000 questions (4,000 train and 1,000 test) based on templates and then paraphrased.

• LC-QuAD 2.0 Dubey et al. [2019]: A large dataset based on Wikidata with 6,046 test questions and around
24k training questions. Questions in this dataset have a good variety and complexity levels such as multi-fact
questions, temporal questions and questions that utilise qualifier information.

• SimpleQuestions-WD Diefenbach et al. [2017]: A version of the popular SimpleQuestions dataset mapped
to Wikidata. It comprises of 5,622 test questions, and around 19K training questions. This is a subset of
the original dataset on Freebase which contained 108K questions. As the name implies, all questions in this
dataset are simple with queries encompassing a single triple in the KB.

3.1.2 Baselines

For the DBpedia-based benchmarks, we compare GenRL with Falcon Sakor et al. [2019] and SLING Mihinduku-
lasooriya et al. [2020]. As for Wikidata-based benchmarks, we compare against Falcon 2.0 Sakor et al. [2020] and
KB-Pearl Lin et al. [2020]. We did not directly compare with the other systems on SimpleQuestions (Freebase) such as
Lukovnikov et al. Lukovnikov et al. [2019] (F1: 0.83) because SimpleQuestions(Wikidata) is on a different KG and is a
smaller subset. Finally, we provide a seq2seq baseline (GenRL wo/KB) by fine-tuning BART having only the question
as a source and the list of relations as a target.

3.1.3 Model settings

We trained our seq2seq model using BART-large on the training data provided for each dataset and set the encoder
size to 512 tokens. We used 2 NVIDIA V100 GPUs to train the models over 10 epochs with a batch size of 4. With
this setup, the models generally do not require long training time. For example, on LC-QuAD 2.0, the largest dataset,
the training requires 12hrs. On QALD-9, with a few hundred examples, the train runtime is only 9 minutes. During
inference, we expanded the beam search up to 50 beams in order to generate the top-50 list of entity-relation pairs
ranked by their probabilities.

6

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

LC-QuAD 1.0 QALD-9
P R F1 P R F1

Falcon 1.0 Sakor et al. [2019] 0.42 0.44 0.439 0.23 0.23 0.239

SLING Mihindukulasooriya et al. [2020] 0.41 0.55 0.479 0.39 0.50 0.449

GenRL wo/KB 0.47 0.50 0.48 0.51 0.43 0.47
GenRL 0.54 0.74 0.60 0.49 0.61 0.53

Table 1: Relation linking results on DBpedia based datasets. GenRL wo/KB refers to our model without Knowledge
Integration and Knowledge Validation.

LC-QuAD 2.0 LC-QuAD 2.01942 SimpleQ WD
P R F1 P R F1 P R F1

Falcon 2.0 Sakor et al. [2020] 0.44 0.37 0.40 0.43 0.32 0.3610 0.35 0.44 0.39
KBPearl Lin et al. [2020] - - - 0.57 0.48 0.5211 - - -

GenRL wo/KB 0.81 0.81 0.81 0.87 0.86 0.87 0.96 0.96 0.96
GenRL 0.88 0.82 0.84 0.89 0.85 0.87 0.98 0.98 0.98

Table 2: Relation linking results on Wikidata based datasets. LC-QuAD 2.01942 is the subset used by KBPearl Lin et al.
[2020].

3.2 Results

Table 1 and Table 2 show the results of GenRL in comparison to other state-of-the-art approaches on DBpedia and
Wikidata based datasets. These results evidently show that GenRL outperforms all the existing approaches by a large
margin, i.e. achieving a higher F1 score between 9 points (compared to SLING on QALD) and 59 points (compared to
Falcon on Simple Questions-WD).

The results, particularly for BART, show that vanilla seq2seq models in most cases perform better than the state-of-the-
art relation linking approaches such as SLING, Falcon, and KBPearl. This clearly demonstrates that the challenges
with relation linking can be naturally addressed using simple seq2seq models. Furthermore, our model GenRL is using
knowledge integration and performs better than the baseline seq2seq model on all the datasets. These results show the
positive impact of the KB integration in GenRL, which we further demonstrate with extensive analysis and ablation
study in the next sections.

3.3 Detailed Analysis

3.3.1 Accuracy of predicting the number of relations

In order to evaluate the system’s ability to predict the correct number of relations, we have calculated the percentages of
questions where (a) predicted number of relations is same as the number of gold relations, (b) predicted number of
relations is larger than the gold relations and (c) the predicted number of relations is smaller than the number of gold
relations. This experiment checks only the accuracy of predicting the correct number of relations, without considering
if relations themselves are correct. Table 3 indicates that seq2seq models are stronger in predicting the correct number
of relations from text compared to rule-based systems such as Falcon 1.0 and 2.0. GenRL wo/KB model has slightly
better performance in predicting the correct number of relations. In our analysis, the slight decrease was mainly
influenced by the entity linking error propagation during KI. Furthermore, we can see that all systems perform better on
template-based datasets (LC-QuAD 1.0 / 2.0) than manually constructed datasets (QALD-9).

3.3.2 Entity linking error propagation

In order to understand the impact of entity linking which is used by both knowledge integration and validation steps,
we performed an experiment on LC-QuAD 1.0 using gold standard entities similar to EERL Pan et al. [2019]. EERL

9These numbers differ from the cited paper because we only performed evaluation on the test set in this experiment setup. The
cited papers used both training and test set for their evaluation. We reevaluated them only for test set.

10We calculated the results for the subset using the file at https://github.com/SDM-TIB/falcon2.0/blob/master/
datasets/results/test_api/falcon_lcquad2.csv

11The KBPearl paper reports F1 of 0.41 due to a typo but its authors confirmed the correct F1 to be 0.52.

7

https://github.com/SDM-TIB/falcon2.0/blob/master/datasets/results/test_api/falcon_lcquad2.csv
https://github.com/SDM-TIB/falcon2.0/blob/master/datasets/results/test_api/falcon_lcquad2.csv

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

Dataset QALD - 9 LC-QuAD 1.0 LC-QuAD 2.0

Num of rels
pred

=
gold

pred
>

gold

pred
<

gold

pred
=

gold

pred
>

gold

pred
<

gold

pred
=

gold

pred
>

gold

pred
<

gold
Falcon 1/2 26% 23% 51% 43% 34% 23% 31% 16% 54%
GenRL wo/KB 70% 9% 21% 93% 1% 6% 94% 1% 5%
GenRL 69% 7% 24% 87% 1% 12% 92% 1% 7%

Table 3: A comparison of the predicted number of relations vs the number of gold relations in the LC-QuAD 2.0 dataset.

Gold Standard Query Relations yielding
the same answer

Rel Prediction
F1

In which state is the alma mater of Ben Ysursa
located?

SELECT DISTINCT ?uri WHERE {
dbr:Ben_Ysursa dbp:almaMater ?x .
?x dbo:state ?uri .
}

dbp:almaMater
dbo:state 1.0

dbo:almaMater
dbo:state 0.5

dbp:almaMater
dbp:state 0.5

dbo:almaMater
dbp:state 0.0

Table 4: An example query from LC-QuAD 1.0 training set

reported an F1 of 0.55 with a precision of 0.53 and a recall of 0.58. With gold entities, GenRL resulted in an F1 of
0.68 with a precision of 0.60 and a recall of 0.83 compared to the 0.60 F1 with machine entity linking. Gold entities
help to align the questions better with KG in both Knowledge Integration (improving recall) and Knowledge Validation
(improving precision).

3.3.3 Impact on end-to-end KBQA performance

In order to check the impact on KBQA, we have used the state-of-the-art KBQA system by Kapanipathi et al. [2021]
and replaced its relation linking module with GenRL. For LC-QuAD 1.0, it results in a ∼15% point increase in Macro
F1 from 44.45 to 59.63. We intend to investigate this further and expand it to other datasets in the future.

3.4 Error Analysis

LC-QuAD 1.0 While analysing the low precision of our results in LC-QuAD 1.0 dataset, we noticed that the dataset
used for this benchmark, that is, DBpedia 2014-04 version has an issue of redundancy in relations. For example, Ben
Ysursa and Gonzaga University are connected using both dbo:almaMater and dbp:almaMater relations. In such cases,
the gold standard query can contain either one of them. It is not possible for relation linking systems to produce the
exact relation in terms of dbo:/dbp: variant as in the gold standard since both of them are equally valid (in terms
of retrieving the same exact answer from the KB). For example, Table 4 shows a question with its gold relation set
compared to three other equally valid relation sets where each one of them gets a different F1 score according to how
much it matches the specific set of gold relations.

In order to understand the significance of the problem, we have analysed the 4,000 training questions in LC-QuAD
1.0 and found 2,623 (66%) of them had other variations of valid queries (queries that will generate non-empty results)
only by changing the namespace (e.g., dbo:state vs dbp:state). In 1,587 variations, they produced the exact same list of
answers as the query in the gold standard and in 881 cases they produced a partial match with the gold answer, and in
155 cases they produced a different answer. If we create all valid SPARQL query variations based on the answer set
overlap and re-evaluated our system allowing any of those equivalent combination to be the gold query, GenRL gets
an F1 of 0.73 (P: 0.72 and R: 0.76) compared to the standard evaluation of 0.60 F1. This provides evidence that the
precision of GenRL on LC-QuAD 1.0 in Table 1 is affected by this issue of the DBpedia KB.

QALD-9 This dataset contains complex queries that sometimes contain several unions to fit exactly to the question
that is being asked and the KB content as shown in Fig 6. Predicting relations for such complex queries is challenging
for all relation linking systems.

8

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

Figure 6: A SPARQL query using UNIONs from QALD-9 dataset. Here the single relation located in is mapped to four
KB relations: location, city, isPartOf and operator.

LC-QuAD 2.0 We noticed that gold SPARQL queries contained some relations that are deleted12 such as P134, P727,
and P1112. In LC-QuAD 2.0 training data, we counted 20 such relations. Our evaluation was run on a snapshot of
April, 2021 version of the KB and Wikidata has evolved significantly since 2019, the time LC-QuAD 2.0 was created.
Nevertheless, we assume that most facts in questions might not have changed and the negative impact of this on reported
numbers to be minimal. Furthermore, we have noticed that some of the questions do not match with their SPARQL
queries. For example, there were some questions with text such as “What is it?" or “How is it".

Finally, we observed some unnatural questions due to the use of templates, e.g., “Who is the country for head of state of
Mahmoud Abbas?". Despite these issues, GenRL was able to outperform all existing systems and achieves a promising
performance across all datasets. This indicates that GenRL is tolerant to these types of questions.

4 Discussion

4.1 Qualitative Analysis

In this experiment, we took a random 10% of LC-QuAD 1.0 training data as a training subset and another 10% as a
validation set with the number of unseen relations in the validation set being 114 relations. Table 5 shows a number of
examples from the validation dataset. GenRL could predict relations where there is a lexical gap between the question
text and the relations itself such as settlementType and placeOfBurial. It was also able to predict multiple explicit
(e.g. network, sire), implicit (e.g. honours, starring), and even unseen relations (e.g. instrument and cpu) thanks to
its knowledge integration and validation steps. However, implicit relation and relations with lexical gap still pose a
challenge on GenRL and on all existing relation linking approaches. In particular, for the question Name the rivers
who originate from Essex?, the question text does not imply why a model would prefer “mouthPlace" (gold) over
sourceRegion (predicted). Similarly, in the question Who acted in the movies whose music is composed by Walter
Scharf?, again the text for “acted" is actually closer to the predicted relation “starring" than to the gold “artist". We
intend to investigate further on how to use KB knowledge to handle such cases in our future work.

4.2 Generative Structured Output Evaluation

Table 6 shows the results computed only considering the output from the seq2seq model using the argument-relation
representation as the gold standard. On DBpedia-based datasets, we observe higher numbers compared to the results
of GenRL showed in Table 1 (+10 F1 on QALD-9, +14 F1 on LC-QuAD 1.0). In this case the seq2seq model
has been trained on relation labels without URIs. The difference in performance can be explained by the challenge
of disambiguating the appropriate namespaces (dbo vs dbp) as discussed in Section 3.4. It is worth noticing the
performance achieved on QALD-9 despite the fact that the model has been fine-tuned only on 398 examples. On
both Wikidata-based datasets, we observe very high numbers mainly due to the availability of larger training sets. In
particular, the seq2seq model pushes the boundaries on SimpleQuestions-WD obtaining an F1 of around 98% solving
the task for this dataset.

4.3 Training with Less Data

In this section, we study the performance of the system on LC-QuAD 1.0, as we vary the size of the training set. We
hold out a subset of randomly selected 400 questions from the training set that we use as a development set. We create
different training splitting on the remaining part.

12https://www.wikidata.org/wiki/Wikidata:Requests_for_deletions/Archive/2019/Properties/1

9

https://www.wikidata.org/wiki/Wikidata:Requests_for_deletions/Archive/2019/Properties/1

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

Question Gold Predicted Correct
Single Relation:
What are the towns who have Thesaban system? settlementType settlementType 3
Where is the grave of Ivan III of Russia? placeOfBurial placeOfBurial 3

Multiple Relations:
In which sitcom did Jeff Conaway acted
and had TNT as its network? starring, network starring, network 3
Which awards have been given to the horse
who sired Triplicate? sire, honours sire, honours 3

Unseen Relations:
What famous musicians play the remo? instrument instrument 3
Which appliance’s CPU is Cell (microprocessor)
and predecessor is PlayStation 2? cpu, predecessor cpu, predecessor 3

Wrong Predictions:
Name the rivers who originate from Essex? mouthPlace sourceRegion 7
Who acted in the movies whose music is
composed by Walter Scharf? musicComposer, artist musicComposer, starring 7

Table 5: Qualitative Analysis of GenRL predictions from LC-QuAD-1 dataset

n. train P R F1
QALD-9 398 0.65 0.63 0.63
LC-QuAD 1.0 4,000 0.73 0.76 0.74
LC-QuAD 2.0 24,000 0.85 0.86 0.85
SimpleQ WD 19,235 0.98 0.98 0.98

Table 6: Results for the structured output generated by the seq2seq model

Table 7 reports the results of this study. Each row shows the performance of GenRL trained on different portions of the
original training set. Surprisingly, the model trained only on 1% of the training set (i.e. 40 examples) obtains 48% F1.
In addition, with the 20% the model achieves performance close to that obtained by a fully trained model.

5 Related Work

Knowledge base question answering has become a popular task due to its relevance to many real-world applications.
The recent KBQA systems, particularly on knowledge bases such as DBpedia Auer et al. [2007] and Wikidata Vrandečić
and Krötzsch [2014] can be categorized into rule-based, unsupervised systems Kapanipathi et al. [2021], Hu et al.
[2017] and end-to-end trained models Maheshwari et al. [2019], Chen et al. [2020], Yu et al. [2017]. Rule-based
approaches Kapanipathi et al. [2021], Hu et al. [2017] use semantic/dependency parses and have shown to be highly
effective for KBQA. Among supervised approaches pre-trained language models have been popularly used for answering
questions over a knowledge base. In both of these categories of KBQA systems, the performance of transforming
natural language question text to SPARQL is impacted by entity and relation linking components Kapanipathi et al.
[2021]. In particular, relation linking has shown to be the primary error propagation module and needs to be significantly
improved.

Existing relation linking approaches can be broadly categorised into rule-based, distantly supervised and strictly
supervised methods. Several rule-based systems have been proposed recently for relation linking Sakor et al. [2019],
Pan et al. [2019], Dubey et al. [2018], Mulang et al. [2017], Sakor et al. [2020]. Among those, Falcon Sakor et al.
[2019] jointly links entities and relations in a question to DBpedia using a sequence of steps including POS tagging,
n-gram tiling and compounding. Falcon 2.0 Sakor et al. [2020] is the recent version of Falcon that performs linking to
Wikidata knowledge base. Similarly, Entity Enabled Relation Linking (EERL) Pan et al. [2019] investigated the use
of questions’ entities to support relation linking task over DBpedia KB. KBPearl Lin et al. [2020] is another system
that performs joint entity and relation linking to Wikidata. It first creates a semantic graph of text using OpenIE and
maps both entities and relations to a given KB. SLING Mihindukulasooriya et al. [2020] is an example of a distantly
supervised system. It leverages semantic parsing techniques for better question understanding and builds an ensemble

10

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

Train (%) P R F1
1% 0.53 0.47 0.48
10% 0.64 0.66 0.63
20% 0.68 0.72 0.69
40% 0.73 0.78 0.74
60% 0.75 0.80 0.77
80% 0.77 0.82 0.78

Table 7: Training with less data study on LC-QuAD 1.0, GenRL trained on a percentage of training data and tested on a
development set of 400 questions

of approaches (e.g., statistical mapping, word embedding) to achieve state-of-the-art performance on various DBPedia
datasets. Among those components, a BERT-based distantly supervised relation extraction system is trained using
sentences automatically collected from Wikipedia. Compared to these approaches, GenRL has the important advantage
of not being KB-specific, which enables easy domain portability across different KBs. In addition, GenRL does not
require the use of NLP components such as semantic parsing that helps reduce error propagation in the overall approach.

6 Conclusions and Future Work

In this work, we show that relation linking can be formulated as a sequence generation problem leveraging recent
advancements in auto-regressive sequence-to-sequence models. This simple yet powerful approach is shown to largely
outperform all existing relation linking systems that apply sophisticated heuristics over several datasets. To further
improve this model, we proposed the knowledge integration and validation strategies which infuse the structure of the
underlying knowledge base into the neural model. In our experiments, we show that this strategy helps the model to
better generalise especially on relations not previously seen during training. The knowledge integration and validation
steps resulted in absolute improvements of up to 12% on F1 score compared to the simple seq2seq model. In our
research agenda, we plan to investigate generative models with knowledge integration to model the end-to-end KBQA
setup.

References
Ahmad Sakor, Isaiah Onando Mulang, Kuldeep Singh, Saeedeh Shekarpour, Maria Esther Vidal, Jens Lehmann, and

Sören Auer. Old is gold: linguistic driven approach for entity and relation linking of short text. In NAACL: HLT
2019, pages 2336–2346, 2019.

Xueling Lin, Haoyang Li, Hao Xin, Zijian Li, and Lei Chen. Kbpearl: a knowledge base population system supported
by joint entity and relation linking. Proceedings of the VLDB Endowment, 13(7):1035–1049, 2020.

Nandana Mihindukulasooriya, Gaetano Rossiello, Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Mo Yu,
Alfio Gliozzo, Salim Roukos, and Alexander Gray. Leveraging semantic parsing for relation linking over knowledge
bases. In International Semantic Web Conference, pages 402–419. Springer, 2020.

Ahmad Sakor, Kuldeep Singh, Anery Patel, and Maria-Esther Vidal. Falcon 2.0: An entity and relation linking tool
over wikidata. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management,
pages 3141–3148, 2020.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented
generation for knowledge-intensive NLP tasks. In NeurIPS, 2020a.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick S. H. Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vassilis Plachouras, Tim Rocktäschel, and Sebastian Riedel. KILT: a benchmark for knowledge
intensive language tasks. CoRR, abs/2009.02252, 2020.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity retrieval. CoRR,
abs/2010.00904, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoy-
anov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. In ACL, pages 7871–7880. Association for Computational Linguistics, 2020b.

11

Generative Relation Linking for Question Answering over Knowledge Bases A PREPRINT

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, pages 5998–6008, 2017.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. Scalable zero-shot entity linking
with dense entity retrieval. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6397–6407. Association for Computational Linguistics, November 2020.

Ricardo Usbeck, Ria Hari Gusmita, Axel-Cyrille Ngonga Ngomo, and Muhammad Saleem. 9th challenge on question
answering over linked data (QALD-9) (invited paper). In Semdeep/NLIWoD@ISWC, volume 2241 of CEUR
Workshop Proceedings, pages 58–64. CEUR-WS.org, 2018.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. Lc-quad: A corpus for complex question
answering over knowledge graphs. In ISWC 2017, pages 210–218, 2017.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann. LC-QuAD 2.0: A Large Dataset for
Complex Question Answering over Wikidata and DBpedia. In The Semantic Web - ISWC 2019 - 18th International
Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part II, volume 11779
of Lecture Notes in Computer Science, pages 69–78. Springer, 2019. doi:10.1007/978-3-030-30796-7_5. URL
https://doi.org/10.1007/978-3-030-30796-7_5.

Dennis Diefenbach, Thomas Pellissier Tanon, Kamal Deep Singh, and Pierre Maret. Question answering benchmarks
for wikidata. In Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks co-located with 16th
International Semantic Web Conference (ISWC 2017), Vienna, Austria, October 23rd - to - 25th, 2017., 2017. URL
http://ceur-ws.org/Vol-1963/paper555.pdf.

Denis Lukovnikov, Asja Fischer, and Jens Lehmann. Pretrained transformers for simple question answering over
knowledge graphs. In ISWC 2019, volume 11778, pages 470–486, 2019.

Jeff Z Pan, Mei Zhang, Kuldeep Singh, Frank van Harmelen, Jinguang Gu, and Zhi Zhang. Entity enabled relation
linking. In International Semantic Web Conference, pages 523–538. Springer, 2019.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria
Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, et al. Leveraging abstract meaning representation for
knowledge base question answering. Findings of the Association for Computational Linguistics: ACL, 2021.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. Dbpedia: A
nucleus for a web of open data. In The semantic web, pages 722–735. 2007.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communications of the ACM,
57(10):78–85, 2014.

Sen Hu, Lei Zou, Jeffrey Xu Yu, Haixun Wang, and Dongyan Zhao. Answering natural language questions by subgraph
matching over knowledge graphs. IEEE Transactions on Knowledge and Data Engineering, 30(5):824–837, 2017.

Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, and Jens Lehmann.
Learning to rank query graphs for complex question answering over knowledge graphs. In International semantic
web conference, pages 487–504. Springer, 2019.

Yongrui Chen, Huiying Li, Yuncheng Hua, and Guilin Qi. Formal query building with query structure prediction
for complex question answering over knowledge base. In International Joint Conference on Artificial Intelligence
(IJCAI), 2020.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cícero Nogueira dos Santos, Bing Xiang, and Bowen Zhou. Improved neural
relation detection for knowledge base question answering. In ACL 2017, pages 571–581, 2017.

Mohnish Dubey, Debayan Banerjee, Debanjan Chaudhuri, and Jens Lehmann. Earl: joint entity and relation linking for
question answering over knowledge graphs. In ISWC2018, pages 108–126, 2018.

Isaiah Onando Mulang, Kuldeep Singh, and Fabrizio Orlandi. Matching natural language relations to knowledge graph
properties for question answering. In SEMANTiCS 2017, pages 89–96, 2017.

12

https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-030-30796-7_5
http://ceur-ws.org/Vol-1963/paper555.pdf

	1 Introduction
	2 GenRL: Generative Relation Linking
	2.1 Encoder Input Representation
	2.2 Decoder Output Representation
	2.3 Knowledge Validation
	2.3.1 Entity-Relation Heuristics.
	2.3.2 Placeholder-Relation Heuristics.

	3 Evaluation
	3.1 Experimental Setup
	3.1.1 Benchmarks
	3.1.2 Baselines
	3.1.3 Model settings

	3.2 Results
	3.3 Detailed Analysis
	3.3.1 Accuracy of predicting the number of relations
	3.3.2 Entity linking error propagation
	3.3.3 Impact on end-to-end KBQA performance

	3.4 Error Analysis

	4 Discussion
	4.1 Qualitative Analysis
	4.2 Generative Structured Output Evaluation
	4.3 Training with Less Data

	5 Related Work
	6 Conclusions and Future Work

