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Differential privacy is among the most prominent techniques for data anonymisation, and it is the first one
proposed with rigorous mathematical guarantees. Previous work demonstrated that concrete implementations
of differential privacy mechanisms are vulnerable to statistical attacks. This vulnerability is caused by the
approximation of real values to floating point numbers. This paper presents a practical solution to the finite-
precision floating point vulnerability, where the inverse transform sampling of the Laplace distribution can
itself be inverted, thus enabling an attack where the original value can be retrieved with non-negligible
advantage.

The proposed solution has the advantages of being generalisable to any infinitely divisible probability
distribution, and of simple implementation in modern architectures. Finally, the solution has been designed to
make side channel attack infeasible, because of inherently exponential, in the size of the domain, brute force
attacks.
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1 INTRODUCTION
The generation of random samples from probability distributions is a well-studied field, and is an
ever-present feature in programming languages and random number generators alike. Random
sampling is especially important in the field of differential privacy, where specially-calibrated
random noise is used to protect published data from unwanted inference. However, while the
definition and analysis of differential privacy is typically viewed in the theoretical, real-valued
world of mathematics, translating its rigorous guarantees to the floating-point world of computers
requires special attention.

Work by Mironov in 2012 [Mir12] was the first to point to significant vulnerabilities in floating
point implementations of differential privacy, which allow for catastrophic destruction of the
much-vaunted privacy guarantees. Using naïve sampling of the Laplace distribution, Mironov
was able to exploit holes in the output space to reconstruct the original input from a finite list
of candidate inputs. Being able to reconstruct a single value with certainty is a blatant breach of
differential privacy, which should guarantee uncertainty on any query. In this paper, we further
extend Mironov’s approach to present a novel attack on the Gaussian mechanism (Section 2.4).
It is well-known that the cardinality of the real line R is the same as that of the unit interval

on the real line, [0, 1], which allows for precise sampling using the inverse transform method. For
floating-point numbers however, there are many more numbers on the real line than there are in the
unit interval, which results in the holes that Mironov used in the attack. Typical defences against
this vulnerability eliminate these holes by limiting the output space, using such techniques as the
“snapping mechanism” [Mir12], and sampling from the discrete analogue of the distribution [Goo20,
CKS20], but these require much more complex code to implement.
In this paper, we seek an alternative defence – that of computational complexity. The attack

presented by Mironov relies on an attacker inverting the sampling procedure to test the feasibility
of candidate inputs. Although random samples generated from a single random number (e.g., the
Laplace distribution) are vulnerable to this attack, samples generated by two or more random
numbers (e.g., the Gaussian distribution) are less vulnerable. By generating samples from multiple
random numbers, we can render the attack sufficiently costly so as to be impractical on today’s
computers.

We demonstrate how this approach can be implemented with ease for the Laplace and Gaussian
distributions (both popular in differential privacy), and a large family of probability distributions.
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The approach can be extended to systems of reduced precision (e.g., single- and half- precision
floating point), and allows for any desired level of complexity to be achieved.
Given that data is commonly stored as floating point numbers, we believe there is value in

developing tools that reflect this reality. Equally, we are cognisant of the need to develop simple
solutions to these complex tasks, to allow for easy implementation, adoption, generalisation and
understanding of the techniques. As described in [Dev86]:

Fast programs are seldom short, and short programs are likely to be slow. But it is also
true that long programs are often not elegant and more error-prone. Short smooth
programs survive longer and are understood by a larger audience.

The rest of the paper is organised as follows. Section 2 describe the required background informa-
tion. The guiding principles to this paper are then given in Section 3, with the specifics presented in
Section 4. Example implementations are given in Section 5 and the protection provided is explored
in Section 6 After reviewing the state of the art in Section 7, the contribution is summarised in
Section 8.

2 BACKGROUND
This section will give a brief outline of the vulnerability presented in [Mir12], alongside an example
attack implementation and its extension to attacking Gaussian sampling, and the current state-of-
the-art in mitigating against the attack.

2.1 Floating point numbers
To begin, we give a very brief outline of floating point numbers. Floating point numbers take their
inspiration from scientific notation to store a wide range of numbers in binary format. Double-
precision floating points (also known as doubles) occupy 64 bits of storage, comprising 1 bit for
the sign, 11 bits for the exponent and the remaining 52 bits for the fraction or mantissa.1 The
corresponding real number for a given double is given by

(−1)sign (1.𝑏51𝑏50 . . . 𝑏0)2 × 2𝑒−1023,
where 𝑏0, . . . , 𝑏51 ∈ {0, 1} are the bits of the mantissa, and 𝑒 ∈ N is the non-negative integer
exponent. This format allows for the representation of numbers between 10−308 and 10308, with
varying degrees of granularity.

The IEEE standard1 gives an algorithm for addition, subtraction, multiplication, division, and
square root and requires that implementations produce the same result as that algorithm.
The standard specifies that floating-point numbers are represented as base 2 fractions. For

example, the value 0.0012 represents the decimal value 0
2 + 0

4 + 1
8 . Nonetheless, not all decimal

fractions can be represented exactly as binary fractions. Thus, the decimal floating-point numbers
are approximated to the binary floating point. For example, in base-2, 1

10 is represented as the
infinitely-repeating value 0.0001100110011 . . .
The standard provides information about the error introduced by both the representation and

operations that can be performed. For example, the addition (and subtraction) operation can be
performed by converting the operands to the same exponent, and then summing (or subtracting)
the mantissa. On the other hand, multiplications can be computed by multiplying the mantissa of
both operands and adding the exponents.

These operation introduce a rounding error, as the values need to be converted and as multipli-
cations are performed. Moreover, the standard specifies various rounding modes, including round
to nearest (where ties round to the nearest even digit in the required position, the most commonly
1ANSI/IEEE Std 754–2019 http://754r.ucbtest.org

http://754r.ucbtest.org
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used), round away from zero, round up (toward +∞), round down (toward −∞), and round toward
zero (i.e., truncation).

The amount of error can be quantified [Gol91] to a machine epsilon (generally denoted as 𝐸mach),
that depends on the actual precision used in the representation. For example, single precision
floating point (32 bits) have a machine epsilon equal to 2−23 ≈ 1.19 × 10−7, while double precision
floating point numbers (64 bits) have a machine epsilon equal to 2−52 ≈ 2.22 × 10−16.

2.2 Random number sampling
When sampling random numbers from a probability distribution, the common starting point is to
take a (many) random number(s) from the unit interval and transform them to sample from the
given distribution. Although the unit interval can be sampled with increasing granularity closer to
zero, the typical practice is to sample from a multiple of a small number. For example, the Python
programming language returns a multiple of 2−53 when sampling from the unit interval.

Inverse transform sampling is a popular method to sample from certain probability distributions,
by taking the inverse of the Cumulative Distribution Function (CDF) or Cumulative Mass Function
(CMF). For example, given a CDF 𝐹 (𝑥) : R → [0, 1] from which we want to sample, and whose
inverse 𝐹−1 (𝑥) : [0, 1] → R is known, then given𝑈 ∼ U(0, 1), we have

P(𝐹−1 (𝑈 ) ≤ 𝑥) = P(𝑈 ≤ 𝐹 (𝑥)) = 𝐹 (𝑥),
for 𝑥 ∈ R, noting that P(𝑈 ≤ 𝑢) = 𝑢 for a uniform variate𝑈 ∼ U(0, 1) and 𝑢 ∈ [0, 1].

2.3 Mironov attack
Noting that there are only 253 possible uniform variates to be generated and 264 floating point
numbers, there is an immediate difficulty in covering the output space with the image of a trans-
formation. Without additional randomness, it is impossible for the inverse transform sampling
method to fully cover the real line. This was demonstrated in [Mir12], where the author confirmed
that gaps appear in the output space between the outputs of consecutive uniform variates. Mironov
formulated an attack that could successfully reconstruct an entire database, with certainty, under
specific conditions.

The CDF of the standard Laplace distribution is given by

𝐹Lap (𝑥) =
{
1
2𝑒

𝑥 if 𝑥 ≤ 0,
1 − 1

2𝑒
−𝑥 if 𝑥 > 0,

(1)

with which we can calculate its inverse:
𝐹−1Lap (𝑢) = (−1) ⌊𝑢 ⌉1 log(1 − 2 |𝑢 − 0.5|), (2)

where ⌊·⌉𝑘 denotes rounding to the nearest multiple of 𝑘 ∈ R. A Laplace variate can then be
generated using 𝐹−1Lap (𝑈 ) ∼ Lap(0, 1), by first sampling a uniform variate𝑈 ∼ 𝑈 (0, 1). We present
an example algorithm for attacking a single value in a dataset in Algorithm 1.
Critical to this attack is the ability to compute the inverse of the sampling procedure (i.e., the

CDF, given in (2), in the case of inverse transform sampling). The success of this attack is therefore
independent of the precision of the uniform variate, and can be executed whenever the sampling
function can be inverted.

2.4 Gaussian attack
We now show an extension of the Mironov attack to the Gaussian distribution, one which we believe
to be novel. This attack can be performed on Gaussian variates sampled using the popular Box-
Muller transform [BM58]. Given two uniform variates 𝑈1,𝑈2 ∼ U(0, 1), the Box-Muller transform



4 Naoise Holohan and Stefano Braghin

Input: Attack target 𝑣 , DP query 𝑄 using the Laplace mechanism with implementation (2),
finite candidate set C

Output: Attack result 𝑐 ∈ C
1 while |C| > 1 do
2 𝑞 = 𝑄 (𝑣)
3 for 𝑐 ∈ C do
4 𝑢 = ⌊𝐹Lap (𝑞 − 𝑐)⌉2−𝑝
5 if 𝐹−1Lap (𝑢) + 𝑐 ≠ 𝑞 then
6 remove 𝑐 from C
7 end
8 end
9 end

10 return remaining element 𝑐 ∈ C
Algorithm 1: Example algorithm implementing the Mironov attack

returns two independent Gaussian samples 𝑁1, 𝑁2 ∼ 𝑁 (0, 1) as follows:

𝑁1 =
√︁
−2 log(1 −𝑈1) cos(2𝜋𝑈2), (3a)

𝑁2 =
√︁
−2 log(1 −𝑈1) sin(2𝜋𝑈2). (3b)

Knowing both 𝑁1 and 𝑁2, we can recover𝑈1 and𝑈2 as follows:

𝑈1 = 1 − 𝑒−
𝑁 2
1 +𝑁

2
2

2 , (4a)

𝑈2 =
1
2𝜋

(
arctan

(
𝑁2
𝑁1

)
+ 𝜋1{𝑁1<0}

)
. (4b)

The same inversion technique as described in Algorithm 1 can be used to eliminate candidates and
determine the true input, noting that 𝑞 and 𝑢 in Lines 2, 4 and 5 will be vectors of two values each.
Getting two values from a mechanism utilising the Box-Muller transform can be done by exe-

cuting the same query twice in succession. Ensuring both values are from the same Box-Muller
operation, and determining which is associated with the cos and which is associated with the sin
can be done by examining the source code and executing a simple timing attack. It is a common
implementation to return the first variate to the user, while caching the second variate to be
returned the next time the function is called [TLLV07]. The calculation overhead in the first step
can be measured to determine the phasing to implement the attack.

This attack can be mitigated against by discarding one of the variates, or by using both variates
in an output of 1√

2 (𝑁1 + 𝑁2).

2.5 Existing defences
To mitigate against the attack, Mironov proposed the snapping mechanism to sample a noisy output
with Laplace-like additive noise. The snapping mechanism involves snapping the noisy output to
the nearest factor of the scale of the noise, resulting in a significant reduction in granularity of the
output. For example, given a privacy budget 𝜖 = 2−5, the only outputs will be multiples of 25 = 32.
Alongside the reduction in granularity, the snapping mechanism is also cumbersome to implement,
requiring a custom approach to sampling from the unit interval, as well as clipping and rounding
operations.
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Another approach is to sample from the discrete analogue of the desired distribution, thereby
giving more control to the user on the discretisation of the output [Goo20, CKS20]. [Goo20] in
particular offers solutions for the Laplace and Gaussian distributions, but requires complex sampling
procedures. It is not clear if it is simple, or possible, to adapt their solution to other probability
distributions.
While there are many algorithms to sample from the discrete Gaussian distribution [CKS20,

Kar16], all common random number generator packages produce floating-point Gaussian variates,
making the implementation of such solutions more complex.

3 GENERAL PRINCIPLES
In this section we present the general principles of the proposed solution. We first make the
following assumptions in analysing the protections provided by our approach:

Assumption 1. Mechanism source code is public.

Assumption 2. Uniform variates are generated using a cryptographically-secure pseudorandom
number generator (CSPRNG).

Assumption 3. Uniform variates are generated as multiples of 2−𝑝 for some fixed 𝑝 ∈ N>0.
Hence, for𝑈 ∼ U(0, 1), we have

𝑈 ∈ [0, 1) ∩
(
2−𝑝N

)
. (5)

Assumption 1 ensures that we cannot achieve security of random number generation through
obscurity, and that the protections are an inherent characteristic of the system. Assumption 2 ensures
that an attacker cannot predict forthcoming uniform variates, as can be done with some standard
Pseudo-Random Number Generators (PRNGs) (e.g., the Mersenne-Twister PRNG). Assumption 3
simplifies some of the analysis of this paper, and aligns with random number generation in many
programming languages.

For clarity, we define the set of uniform variates as follows for a given precision 𝑝 .

Definition 3.1 (Uniform variates). Given 𝑝 ∈ N, we define

U = [0, 1) ∩ (2−𝑝N),

the set of all multiples of 2−𝑝 in the half-open unit interval [0, 1).
This denotes the set of uniform variates in many programming languages. For example, in the

Python programming language, 𝑝 = 53.

Although the holes in the output space of the random number generation provide the key to the
attack as shown in Section 2.3, it relies on the invertibility of the sampling procedure to execute
efficiently. If the sampling procedure can be made non-injective (and consequently, non-invertible),
then any sampled variate could be the result of more than one combination of uniform variate(s).
Therefore, satisfying the non-equality condition of Line 5 in Algorithm 1 would require searching
through all possible uniform variate combinations that approximately give equality in Line 5 (up to
floating point rounding errors).

We can flesh out the details of this using the Gaussian distribution as an example.

Example 3.2 (Gaussian distribution). Consider samples from the Gaussian distribution, as given
in Section 2.4. Although it is possible to reconstruct 𝑈1 and 𝑈2 knowing both outputs from the
Box-Muller transform, we can show that knowing a single Box-Muller output is not sufficient to
execute the Mironov attack in a single step. Suppose 𝑁1 is known to have originated from (3a), and
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Fig. 1. Level curves of (6) for given values of 𝑁1.

we wish to determine𝑈1 and𝑈2 from which it came. We can write

𝑈1 (𝑈2) = 1 − 𝑒
− 𝑁 2

1
2 cos2 (2𝜋𝑈2 ) , (6)

allowing us to solve for𝑈1 given𝑈2. We can similarly write𝑈2 as a function of𝑈1.
As shown in Algorithm 1, we need only find a single pair𝑈1,𝑈2 ∈ U2 that gives equality in Line 5

in order to retain that candidate as feasible. On the real line, any pair 𝑈1,𝑈2 ∈ [0, 1) satisfying
(6) will give equality for Line 5. However, due to floating point rounding errors and the limited
precision of values 𝑈 ∈ U, we need to search through U2 to find values that satisfy the equality
down to the bit of least precision. Figure 1 shows the level curves of (6), illustrating the paths
through the grid of (𝑈1,𝑈2) ∈ U2 that would be traversed in a typical execution of the attack.

This example prompts two questions:
(1) Can we extend the protection offered to Gaussian variates, beyond that of searching through

2𝑝 uniform variates?
(2) Can this approach be adopted for other probability distributions? Particularly, ones with

injective sampling procedures (e.g., the Laplace distribution)?
If we can use our choice of 𝑛 ∈ N uniform variates to generate a single sample from a given

distribution, then a brute-force attack (similar to Example 3.2) would require on the order of 2𝑝 (𝑛−1)
‘checks’. In essence, it would require fixing (𝑛 − 1) of the variates, and running an inversion attack
(e.g., using (6) in the case of the Gaussian distribution) on the 𝑛th variate. Importantly, for a linear
increase in the time to sample a variate, the cost of executing the attack will increase exponentially.
Additionally, this approach can be extended to systems of reduced precision. Single- and half-

precision systems use only 32 and 16 bits respectively to represent a floating point number, com-
pared to the 64 bits allocated for double-precision floating point numbers. For example, Graphical
Processing Units (GPUs) typically use lower-precision floating point numbers in their calculations,
making attacks such as Example 3.2 more feasible.

In implementing such an approach, we can take some inspiration from the subset sum problem
in computer science. The subset sum problem asks, given a multiset 𝐴 of positive integers (𝑎 ∈ N
for each 𝑎 ∈ 𝐴), and a target 𝑇 ∈ Z, is there a subset 𝐴′ ⊆ 𝐴 such that

∑
𝑎∈𝐴′ 𝑎 = 𝑇 ? It is known
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that the subset sum problem is NP-complete [GJ79], making it intractable to solve when the set 𝐴
is large.
Luckily, there is a branch of probability theory that we can exploit in this context – infinite

divisibility.

4 DIVISIBILITY OF PROBABILITY DISTRIBUTIONS
Our approach relies on simple and effective ways to generate random numbers from a given
distribution using many uniform variates. As explained in Section 3, simply increasing the number
of random bits used to generate a random sample from a distribution is not sufficient to protect
against inversion attacks. Instead, we seek to increase the number of uniform variates used to
generate a single random sample.

A probability distribution 𝑃 is divisible, if there exists a distribution𝑄 such that, given independent
𝑋1, 𝑋2 ∼ 𝑄 , we have 𝑋1 +𝑋2 ∼ 𝑃 . 𝑃 is infinitely divisible if, for any 𝑛 ∈ N, there exists a distribution
𝑅𝑛 such that independent 𝑋𝑖 ∼ 𝑅𝑛 for each 𝑖 ∈ [𝑛] satisfy ∑𝑛

𝑖=1𝑋𝑖 ∼ 𝑃 .
Probability distributions that are infinitely divisible therefore allow the greatest flexibility in

increasing the complexity of this defence. Fortunately, the two most popular distributions used in
differential privacy are infinitely divisible.

4.1 Preliminaries
For every 𝑖 ∈ N, we adopt the following notation for these common distributions:

• 𝑁𝑖 ∼ N(0, 1) is a collection of independent (standard) Gaussian random variables, and,
• 𝑈𝑖 ∼ U(0, 1) is a collection of independent uniform random variables on the unit interval.

Formulations of the probability distributions used in this section are given in Appendix A,
For any 𝑛 ∈ N, we let [𝑛] = [1, 𝑛] ∩ N denote the positive integers up to and including 𝑛.
We note that when sampling uniformly from the unit interval, random number generators

typically sample from [0, 1) (i.e., excluding 1). This range is undesirable when computing log(𝑈1),
and instead we use log(1 −𝑈1), since 1 −𝑈1 ∈ (0, 1] lies within the domain of logarithms.
Finally, we limit our analysis to standard distributions, those with zero location and unit scale

parameters. These standard distributions can be scaled and translated as appropriate to get a
distribution of a specific mean and variance (see Appendix A).

4.2 Gaussian distribution
It is well-known that the Gaussian distribution is infinitely divisible. Given that the sum of two
Gaussians is Gaussian (𝑁1 ± 𝑁2 ∼ N(0, 2)), we can generate a standard Gaussian from 𝑛 > 0
standard Gaussians:

1
√
𝑛

𝑛∑︁
𝑖=1

𝑁𝑖 ∼ N(0, 1). (7)

This property of divisibility allows for the sampling of Gaussians with ease for any 𝑛 ∈ N.
Additionally, decomposing any other probability distribution as a function of Gaussians will allow
for the subsequent decomposition into any finite number of Gaussians.

4.3 Laplace distribution
The Laplace distribution is infinite divisible using the gamma distribution.
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Proposition 4.1 (Laplace divisibility [KKP12]). Given an integer 𝑛 ≥ 1, and 𝑋𝑖 , 𝑌𝑖 ∼ Γ
( 1
𝑛
, 1
)

for each 𝑖 ∈ [𝑛], then
𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑌𝑖 ) ∼ Lap(0, 1).

The case of 𝑛 = 1 gives the decomposition of the Laplace distribution as the difference of two
exponential distributions.

Corollary 4.2. Given 𝐸1, 𝐸2 ∼ Exp(1),
𝐸1 − 𝐸2 ∼ Lap(0, 1). (8)

Proof. Noting that Γ(1, 1) ∼ Exp(1) completes the proof. □

The special case of 𝑛 = 2 also deserves special attention.
Corollary 4.3. Given independent samples of the standard Gaussian distribution, 𝑁1, 𝑁2, 𝑁3, 𝑁4 ∼

N(0, 1),
1
2
(
𝑁 2
1 − 𝑁 2

2 + 𝑁 2
3 − 𝑁 2

4
)
∼ Lap(0, 1). (9)

Proof. The chi-squared distributionwith 1 degree of freedom is related to the gamma distribution
(given 𝑋 ∼ 𝜒2 (1), then 1

2𝑋 ∼ Γ
( 1
2 , 1

)
). Furthermore, it is known that a squared sample from the

Gaussian distribution is chi-squared (𝑁 2
1 ∼ 𝜒2 (1)). Combining these two observations completes

the proof. □

The Laplace distribution can be decomposed in many other ways, as given in [KKP12, Table 2.3],
one of which is of particular interest in our context:

Proposition 4.4. Given independent samples of the standard Gaussian distribution,𝑁1, 𝑁2, 𝑁3, 𝑁4 ∼
N(0, 1),

𝑁1𝑁2 − 𝑁3𝑁4 ∼ Lap(0, 1). (10)

Proof. We note that 𝑍 = 𝑁1𝑁2 has a characteristic function 𝜙𝑍 (𝑡) = (1 + 𝑡2)− 1
2 . This gives the

characteristic function for (10) of
𝜙𝑁1𝑁2−𝑁3𝑁4 (𝑡) = 𝜙𝑍 (𝑡)𝜙𝑍 (−𝑡) = (1 + 𝑡2)−1,

which corresponds to the standard Laplace distribution. □

We therefore have two methods to sample from the Laplace distribution as a composition of four
standard Gaussians. Each Gaussian can be further decomposed using (7).

5 SAMPLING IMPLEMENTATIONS
There are many ways to sample from the Gaussian distribution [TLLV07]. We restrict our analysis
to the Box-Muller transform [BM58], owing to its simplicity, compactness, exactness and ubiquity
among programming languages.
The polar method [Bel68] of the Box-Muller transform was developed to avoid the costly sin

and cos calculations. Other methods have been proposed to eliminate the similarly costly log and√· calculations [AD88, Bre93]. These modifications are typically reserved for low-level languages
or machine code, because the added complexity can slow computation time in higher-level lan-
guages [AD72]. Given our focus on high-level languages, such as Python, analysis of these variants
is beyond the scope of this paper.
In this section, we offer simple implementation examples in Python, using standard libraries.

We hope these examples will be sufficient to enable the reader to port the code to their desired
language.
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5.1 Gaussian sampling
As noted in Section 2.4, a naïve implementation of the Box-Muller transform in sampling from the
Gaussian distribution presents vulnerabilities. The question therefore arises of how best to protect
Gaussian samples from the Mironov attack, and there are two immediate considerations:
(1) Discard one of the pair of Box-Muller samples, or
(2) Make use of both samples, noting that 1√

2 (𝑁1 + 𝑁2) ∼ N (0, 1).
Both of these choices are mathematically identical (albeit with the outputs 𝜋

4 out of phase2), but
it may be a more elegant implementation using standard libraries to opt for the second option.
Extending this choice to generating Gaussian samples from multiple Box-Muller draws, using the
infinite divisibility described in Section 4.2, we use 2𝑛 samples3 from the Box-Muller transform,
and divide the result by

√
2𝑛. This can be implemented in Python as follows, after importing the

math and random libraries:
1 sum(gauss(0, 1) for i in range (2 * n)) / sqrt(2 * n)

Readers are encouraged to discard the first result from Box-Muller before sampling in this way,
to ensure no carry-over of uniform variates from a previous draw, which may have already been
successfully attacked.
Importantly, the time taken in the generation of a standard Gaussian variate from 𝑛 uniform

variates increases linearly with 𝑛, whereas the attack complexity as described in Section 3 increases
exponentially in 𝑛. Therefore, a small increase in computation overhead to sample the variates
gives an exponential increase in attack complexity.

5.2 Laplace sampling
We ignore the decomposition of the Laplace distribution into the difference of two exponential
variates, and skip straight to the decomposition into Gaussians.

As such, we are interested in the forms given in Corollary 4.3 and Proposition 4.4. In both
these cases, we can safely use two samples from Box-Muller to generate the Laplace sample,
since squaring-and-summing or multiplying Box-Muller samples breaks the invertibility given in
Section 2.4. Empirical analysis has shown (10) to be the faster option, as (9) requires two additional
multiplication operations. In Python, this can be implemented as follows after importing the random
library:

1 gauss(0, 1) * gauss(0, 1) - gauss(0, 1) * gauss(0, 1)

However, doing so will introduce some redundancy in the uniform variates, which presents an
opportunity for those willing to write their own subroutines.

Theorem 5.1. Given independent uniform variates𝑈1,𝑈2,𝑈3,𝑈4 ∼ U(0, 1),
log(1 −𝑈1) cos(𝜋𝑈2) + log(1 −𝑈3) cos(𝜋𝑈4) ∼ Lap(0, 1) . (11)

Proof. Firstly with (9), we can write the difference of squared outputs from the Box-Muller
transform as follows,

𝑁 2
1 − 𝑁 2

2 = −2 log(1 −𝑈1)
(
cos2 (2𝜋𝑈2) − sin2 (2𝜋𝑈2)

)
(12)

= −2 log(1 −𝑈1) cos(4𝜋𝑈2), (13)

using the double-angle formula cos(2𝜃 ) = 𝑐𝑜𝑠2 (𝜃 ) − sin2 (𝜃 ).
2Since cos(𝜃 ) + sin(𝜃 ) =

√
2 cos

(
𝜃 − 𝜋

4
)

3We need only use 𝑛 samples for sampling procedures that do not share uniform variates between executions, for example
the normalvariate method in Python’s random library, which uses the Kinderman-Monahan sampling procedure [KM77].
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Also, since − cos(4𝜋𝑈2) ∼ cos(𝜋𝑈2) when𝑈2 ∼ U(0, 1), owing to the periodicity of cos, we get
the desired result. Analysis of (10) gives a similar representation. □

In Python, this can be implemented as follows after importing the math and random libraries:
1 log(1 - random ()) * cos(pi * random ()) + log(1 - random ()) * cos(pi * random ())

Remark 1: We observe that 𝑈2 ∈ [0, 1) in a floating-point environment, which results in an
asymmetric output for cos(𝜋𝑈2) ∈ (−1, 1]. We can eliminate this asymmetry by using the first bit
of randomness of𝑈2 to sample the sign, and then using the remaining bits to sample the magnitude,
giving

cos(𝜋𝑈2) ∼ (−1) ⌊𝑈2 ⌉1 cos
(
𝜋

(
𝑈2 mod 1

2

))
in real number arithmetic, with an output space of [−1, 1] \ {0} when 𝑈2 ∈ [0, 1). This can be
implemented in Python as follows:

1 u2 = random ()
2 copysign(cos(pi * (u2 % 0.5)), u2 - 0.5)

Remark 2: The representation in Theorem 5.1 brings two benefits over sampling naïvely with
Box-Muller: (i) reduced redundancy in the cos argument (using Box-Muller, the first two random
bits of 𝑈2 and 𝑈4 are redundant), and, (ii) greater computational efficiency (empirical evidence
suggests a halving in the time taken to sample).

5.3 Choosing 𝑛

In choosing the number, 𝑛, of uniform variates to use in sampling a single Laplace or Gaussian
variate, we take inspiration from current standards in cryptography. The Advanced Encryption
Standard (AES) supports key sizes of 128, 192 and 256 bits, corresponding with search spaces of
sizes 2128, 2192 and 2256 respectively. Thus, it will take𝑂 (𝑘𝑒𝑦 𝑠𝑖𝑧𝑒) steps for a polynomial adversary
to enumerate, and test, all possible keys.

In order to achieve a similar search space size for our application, assuming a precision of 𝑝 = 53
(as in Python), we require 𝑛 = 4, 5 and 6 respectively. We consider it sufficient to use 𝑛 = 4 in most
applications, corresponding to the implementation of Theorem 5.1. This standard has been adopted
in the implementation of the Laplace, Gaussian and other mechanisms4 in the diffprivlib open
source library [HBMAL19].

The effect of 𝑛 on the time it takes to sample from the Laplace distribution is shown in Figure 2.
Despite using four times as many uniform variates, the implementation of Theorem 5.1 only takes
twice as long as the naïve sampling with a single uniform variate. Using the native math and random
libraries is costly for larger 𝑛, owing to Python’s slow for loops. Numpy’s C codebase [vdWCV11]
allows for fast computation even for large 𝑛, and can be further leveraged to produce multiple
samples in parallel, with superior per-sample computation time than naïve sampling. The code for
these simulations is given in Appendix B.

6 GAUSSIAN ATTACK COMPLEXITY
We briefly revisit the brute force attack on the Gaussian distribution in Example 3.2 to highlight the
robustness of the proposed approach. Given a single Gaussian variate, we know from Example 3.2
that we can write 𝑈1 as a function of 𝑈2. This allows us to estimate a lower bound on the number
of checks required on a given variate 𝑁1, since we know that 𝑈1,𝑈2 ∈ U ⊂ [0, 1). We stress that

4https://github.com/IBM/differential-privacy-library/tree/main/diffprivlib/mechanisms

https://github.com/IBM/differential-privacy-library/tree/main/diffprivlib/mechanisms
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Fig. 2. Mean execution time for sampling a single standard Laplace variate, in microseconds (µs), over
5 000 000 runs in Python.

this is only a lower bound, as rounding errors in floating point arithmetic would typically require
the checking of adjacent uniform variates.

For example, using (6), given𝑈2 ∈ [0, 1), we have

𝑈1 ∈
[
1 − 𝑒−

𝑁 2
1
2 , 1

)
,

allowing us to reduce the search space to𝑈1 ∈ U ∩
[
1 − 𝑒−

𝑁 2
1
2 , 1

)
We can therefore approximate the

number of checks as 𝑒−
𝑁 2
1
2 2𝑝 .

Knowing that 𝑁1 ∼ N(0, 1), we can get the expected number of checks as follows:

E[checks] = 2𝑝
∫

𝑒−
𝑥2
2 𝑓 (𝑥)𝑑𝑥 = 2𝑝𝐶

∫
𝑒−

(
√
2𝑥 )2
2 𝑑𝑥 = 2𝑝 𝐶

√
2

∫
𝑒−

𝑥2
2 𝑑𝑥 (14)

=
2𝑝
√
2
= 2𝑝−

1
2 , (15)

where 𝑓 (𝑥) denotes the probability density function of the standard Gaussian distribution N(0, 1)
and 𝐶 is the normalisation constant (see Appendix A.2).
This demonstrates the robustness of the approach, with (15) confirming that the complexity of

the attack only decreases by a small constant from the theoretical limit. While outlying values lead
to smaller search spaces, their vanishingly small probabilities of being sampled result in a small
aggregate impact.

7 RELATEDWORK
The original attack on the Laplace mechanism, which also inspired this work, was first presented
in [Mir12]. Subsequent work on the subject in [GMP16], where the authors analyse the situation
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of infinite-precision semantic at the implementation level. The authors present results arguing that
in general there are violations of the differential privacy property, proposing a variation of the
differential privacy definition leading to a degradation of the privacy level.
Thorough examination of randomness required for differential privacy is presented in [GL20],

where the authors analyse various techniques for random number generation, presenting a picture
of strengths and limitations of the commonly used sources of randomness.
Other work in [DLAMV12] and [MPRV09] analyse theoretical and practical limitations of the

source of randomness used in differential privacy. In particular [DLAMV12] presents an cryp-
tographic requirements for real randomness, and describe the analogies existing in differential
privacy.
In [GMP16] the authors show the violation of differential privacy property caused by the ap-

proximation introduced by the finite-precision representation of continuous data. The authors
also present the conditions under which limited by acceptable privacy guarantees can be provided,
under only a minor degradation of the privacy level.
[HPN11] describes several different kinds of covert-channel attacks for differential privacy

frameworks. The authors present possible countermeasures with particular focus on one specific
solution based on a new primitive called predictable transactions.

[CSU19] presents a systematic study of a fundamental limitation of locally differentially private
protocols with respect to their vulnerability to adversarial manipulation. The authors also present
a solution to provide increased security via a protocol that deploys local differential privacy and
reinforces it with cryptographic techniques.

Finally, [Ilv20] presents a study similar to the one first introduced in [Mir12], but concentrate on
the exponential mechanism of McSherry and Talwar [MT07].

8 CONCLUSION
In this paper we have presented an alternative defence to a particular floating point vulnerability
in differential privacy. The solution we presented, using the infinite divisibility of probability
distributions, is simple to understand, quick and easy to implement, difficult to attack, and gener-
alisable to different probability distributions and system precisions. Of particular interest is the
ability to generate samples from the Laplace distribution in a single statement of code (Section 5.2),
with strong attack guarantees. We believe this is an important contribution to the literature on
differential privacy in mitigating some of the risks associated with operating in a floating point
environment.

ACKNOWLEDGMENTS
This work was supported by European Union’s Horizon 2020 research and innovation programme
under grant number 951911 – AI4Media. The authors also wish to thank David Malone (Hamilton
Institute, Maynooth University) for useful discussions at the beginning of this work.

REFERENCES
[AD72] Ahrens, J. H., and Dieter, U. Computer methods for sampling from the exponential and normal distributions.

Commun. ACM 15, 10 (Oct. 1972), 873–882.
[AD88] Ahrens, J. H., and Dieter, U. Efficient table-free sampling methods for the exponential, Cauchy, and normal

distributions. Commun. ACM 31, 11 (Nov. 1988), 1330–1337.
[Bel68] Bell, J. R. Algorithm 334: Normal random deviates. Commun. ACM 11, 7 (July 1968), 498.
[BM58] Box, G. E. P., and Muller, M. E. A note on the generation of random normal deviates. The Annals of

Mathematical Statistics 29, 2 (1958), 610 – 611.
[Bre93] Brent, R. P. Fast normal random number generators on vector processors. Tec. Rep. TR-CS-93-04, Department

of Computer Science, The Australian National University, Canberra, 0200 ACT, Australia (1993).



Secure Random Sampling in Differential Privacy 13

[CKS20] Canonne, C. L., Kamath, G., and Steinke, T. The discrete Gaussian for differential privacy. In Advances in
Neural Information Processing Systems (2020), H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
Eds., vol. 33, Curran Associates, Inc., pp. 15676–15688.

[CSU19] Cheu, A., Smith, A., and Ullman, J. Manipulation attacks in local differential privacy. arXiv preprint
arXiv:1909.09630 (2019).

[Dev86] Devroye, L. Non-uniform random variate generation. Springer-Verlag, New York, 1986.
[DLAMV12] Dodis, Y., López-Alt, A., Mironov, I., and Vadhan, S. Differential privacy with imperfect randomness.

In Advances in Cryptology – CRYPTO 2012 (Berlin, Heidelberg, 2012), R. Safavi-Naini and R. Canetti, Eds.,
Springer Berlin Heidelberg, pp. 497–516.

[GJ79] Garey, M. R., and Johnson, D. S. Computers and intractability: A guide to the theory of NP-completeness. W. H.
Freeman and Company, New York, 1979.

[GL20] Garfinkel, S. L., and Leclerc, P. Randomness concerns when deploying differential privacy. In Proceedings
of the 19th Workshop on Privacy in the Electronic Society (New York, NY, USA, 2020), WPES’20, Association for
Computing Machinery, p. 73–86.

[GMP16] Gazeau, I., Miller, D., and Palamidessi, C. Preserving differential privacy under finite-precision semantics.
Theoretical Computer Science 655 (2016), 92 – 108. Quantitative Aspects of Programming Languages and
Systems (2013-14).

[Gol91] Goldberg, D. What every computer scientist should know about floating-point arithmetic. ACM computing
surveys (CSUR) 23, 1 (1991), 5–48.

[Goo20] Google Differential Privacy Team. Secure noise generation. github.com/google 1, 1 (Jun 2020), 1–14.
[HBMAL19] Holohan, N., Braghin, S., Mac Aonghusa, P., and Levacher, K. Diffprivlib: the IBM differential privacy

library. ArXiv e-prints 1907.02444 [cs.CR] (July 2019).
[HPN11] Haeberlen, A., Pierce, B. C., and Narayan, A. Differential privacy under fire. In USENIX Security Symposium

(2011), vol. 33.
[Ilv20] Ilvento, C. Implementing the exponential mechanism with base-2 differential privacy. In Proceedings of the

2020 ACM SIGSAC Conference on Computer and Communications Security (2020), pp. 717–742.
[Kar16] Karney, C. F. F. Sampling exactly from the normal distribution. ACM Trans. Math. Softw. 42, 1 (Jan. 2016).
[KKP12] Kotz, S., Kozubowski, T., and Podgorski, K. The Laplace distribution and generalizations: a revisit with

applications to communications, economics, engineering, and finance. Springer Science & Business Media, 2012.
[KM77] Kinderman, A. J., and Monahan, J. F. Computer generation of random variables using the ratio of uniform

deviates. ACM Trans. Math. Softw. 3, 3 (Sept. 1977), 257–260.
[Mir12] Mironov, I. On significance of the least significant bits for differential privacy. In Proceedings of the 2012

ACM Conference on Computer and Communications Security (New York, NY, USA, 2012), CCS ’12, Association
for Computing Machinery, p. 650–661.

[MPRV09] Mironov, I., Pandey, O., Reingold, O., and Vadhan, S. Computational differential privacy. In Annual
International Cryptology Conference (2009), Springer, pp. 126–142.

[MT07] McSherry, F., and Talwar, K. Mechanism design via differential privacy. In Foundations of Computer Science,
2007. FOCS’07. 48th Annual IEEE Symposium on (2007), IEEE, pp. 94–103.

[TLLV07] Thomas, D. B., Luk, W., Leong, P. H., and Villasenor, J. D. Gaussian random number generators. ACM
Comput. Surv. 39, 4 (Nov. 2007), 11–es.

[vdWCV11] van der Walt, S., Colbert, S. C., and Varoqaux, G. The NumPy array: A structure for efficient numerical
computation. Computing in Science and Engineering 13, 2 (2011), 22–30.

APPENDIX
A PROBABILITY DENSITY FUNCTIONS
The following probability distributions are referenced in Section 4.

A.1 Uniform distribution
The uniform distribution on the interval [𝑎, 𝑏] ⊂ R, −∞ < 𝑎 < 𝑏 < ∞, is given by the Probability
Density Function (PDF)

𝑓U(𝑎,𝑏) (𝑥) =
{

1
𝑏−𝑎 if 𝑥 ∈ [𝑎, 𝑏],
0 otherwise.

We make use of the uniform distribution U(0, 1) on the unit interval [0, 1].
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A.2 Gaussian distribution
The Gaussian distribution with mean 𝜇 and variance 𝜎2 is given by the PDF

𝑓N(𝜇,𝜎) (𝑥) =
1

𝜎
√
2𝜋

𝑒−
1
2 ( 𝑥−𝜇

𝜎 )2 .

We refer to the case when 𝜇 = 0 and 𝜎 = 1 as the standard Gaussian distribution. If 𝑁 ∼ N(0, 1),
then 𝜎𝑁 + 𝜇 ∼ N(𝜇, 𝜎).

A.3 Laplace distribution
The Laplace distribution with mean 𝜇 and variance 2𝑏2 is given by the PDF

𝑓Lap(𝜇,𝑏) (𝑥) =
1
2𝑏 𝑒

− |𝑥−𝜇 |
𝑏 .

We refer to the case when 𝜇 = 0 and 𝑏 = 1 as the standard Laplace distribution. If 𝐿 ∼ Lap(0, 1),
then 𝑏𝐿 + 𝜇 ∼ Lap(𝜇, 𝑏).

A.4 Exponential distribution
The exponential distribution with mean 1

𝜆
and variance 1

𝜆2 is given by the PDF

𝑓Exp(𝜆) (𝑥) = 𝜆𝑒−𝜆𝑥 .

We refer to the case when 𝜆 = 1 as the standard exponential distribution. If 𝐸 ∼ Exp(1), then
𝐸
𝜆
∼ Exp(𝜆).

A.5 Gamma distribution
The gamma distribution with mean 𝑘𝜃 and variance 𝑘𝜃 2 is given by the PDF

𝑓Γ (𝑘,𝜃 ) (𝑥) =
1

Γ(𝑘)𝜃𝑘
𝑥𝑘−1𝑒−

𝑥
𝜃 .

If 𝐺 ∼ Γ(𝑘, 𝜃 ), then 𝑐𝐺 ∼ Γ(𝑘, 𝑐𝜃 ) for any 𝑐 > 0.

A.6 Chi-squared distribution
The chi-squared distribution with 𝑘 ∈ N degrees of freedom is given by the PDF

𝑓𝜒2 (𝑘) (𝑥) =
1

2 𝑘
2 Γ

(
𝑘
2

) 𝑥 𝑘
2 −1𝑒−

𝑥
2 .

B CODE SAMPLES
The following code samples were used in estimating execution time for different implementations.
This code was run using Python 3.8.6.

B.1 Naïve sampling
The naïve standard Laplace sampling given by (2) was implemented using:

1 def laplace_naive ():
2 u = random ()
3 return copysign(log(1 - 2 * abs(u - 0.5)), u - 0.5)
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B.2 Theorem 5.1 sampling
The implementation of Theorem 5.1 was given by:

1 def laplace_theorem51 ():
2 return log(1 - random ()) * cos(pi * random ()) + log(1 - random ()) * cos(pi *

random ())

B.3 Sampling with math and random

We combine the Gaussian and Laplace sampling procedures from (7) and (4.4) to generate standard
Laplace samples from 8𝑛 uniform variates using the math and random libraries as follows:

1 def gaussian_sum(n=1):
2 return sum(normalvariate (0, 1) for i in range(n))
3
4 def laplace_math_and_random(n=1):
5 return (gaussian_sum(n) * gaussian_sum(n) - gaussian_sum(n) * gaussian_sum(n))

/ n

B.4 Sampling with Numpy
Finally, we present an implementation of the same procedure using the popular Numpy package,
leveraging its C-based code for faster computations with larger 𝑛:

1 import numpy as np
2
3 def laplace_numpy(n=1):
4 g1 , g2 , g3 , g4 = np.random.standard_normal(size=(4, 2 * n)).sum(axis =1)
5 return (g1 * g2 - g3 * g4) / 2 / n
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