Skip to main content

MUMOR: A Multimodal Dataset for Humor Detection in Conversations

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13028))

Abstract

Humor detection attracts increased attention in natural language processing for its potential applications. Prior work focus on analyzing humor on isolated, textual data, but humor usually comes from the interaction among speakers in a multimodal way. In this paper, we proposed a novel dataset named MUMOR, which consists of multimodal dialogues in both English and Chinese. It contains a total of 29,585 utterances belonging to 1,298 dialogues from two TV-sitcoms. We manually annotated each utterance with humor, emotion, and sentiment labels. To our best knowledge, this is the first corpus containing Chinese conversations for humor detection. This dataset could be used for research on humor detection, humor generation, and multi-task learning on emotion and humor analysis. We released this dataset publicly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morse, D.: Use of humor to reduce stress and pain and enhance healing in the dental setting. J. N.J. Dent. Assoc. 78(4), 32–36 (2007)

    Google Scholar 

  2. Nijholt, A., Niculescu, A.I., Alessandro, V., Banchs, R.E.: Humor in human-computer interaction: a short survey (2017)

    Google Scholar 

  3. Mihalcea, R., Strapparava, C.: Making computers laugh: Investigations in automatic humor recognition. In: HLT/EMNLP 2005, Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, Vancouver, Canada, 6–8 October 2005, pp. 531–538 (2005). https://www.aclweb.org/anthology/H05-1067/

  4. Zhang, R., Liu, N.: Recognizing humor on twitter. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, 3–7, November 2014, pp. 889–898 (2014). https://doi.org/10.1145/2661829.2661997, https://doi.org/10.1145/2661829.2661997

  5. Castro, S., Cubero, M., Garat, D., Moncecchi, G.: Is this a joke? Detecting humor in spanish tweets. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 139–150. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47955-2_12

    Chapter  Google Scholar 

  6. Khandelwal, A., Swami, S., Akhtar, S.S., Shrivastava, M.: Humor detection in english-hindi code-mixed social media content : corpus and baseline system. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, 7–12, May 2018 (2018). http://www.lrec-conf.org/proceedings/lrec2018/summaries/363.html

  7. Blinov, V., Bolotova-Baranova, V., Braslavski, P.: Large dataset and language model fun-tuning for humor recognition. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Long Papers, vol. 1, pp. 4027–4032. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1394

  8. Bertero, D., Fung, P.: A long short-term memory framework for predicting humor in dialogues. In: NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego California, USA, 12–17, June 2016, pp. 130–135 (2016). https://www.aclweb.org/anthology/N16-1016/

  9. Bertero, D., Fung, P.: Multimodal deep neural nets for detecting humor in TV sitcoms. In: 2016 IEEE Spoken Language Technology Workshop, SLT 2016, San Diego, CA, USA, 13–16, December 2016, pp. 383–390 (2016). https://doi.org/10.1109/SLT.2016.7846293

  10. Liu, L., Zhang, D., Song, W.: Modeling sentiment association in discourse for humor recognition. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, 15–20, July 2018, Short Papers, vol. 2, pp. 586–591 (2018). https://doi.org/10.18653/v1/P18-2093, https://www.aclweb.org/anthology/P18-2093/

  11. Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., Mihalcea, R.: MELD: a multimodal multi-party dataset for emotion recognition in conversations. In: Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Long Papers, vol. 1, pp. 527–536 (2019). https://www.aclweb.org/anthology/P19-1050/

  12. Ekman, P., Friesen, W.V., O’sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., Heider, K., Krause, R., LeCompte, W.A., Pitcairn, T., Ricci-Bitti, P.E., et al.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 53(4), 712 (1987)

    Article  Google Scholar 

  13. Hasan, M.K., et al.: UR-FUNNY: a multimodal language dataset for understanding humor. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7, November 2019, pp. 2046–2056. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1211

  14. Castro, S., Hazarika, D., Pérez-Rosas, V., Zimmermann, R., Mihalcea, R., Poria, S.: Towards multimodal sarcasm detection (an \_obviously\_ perfect paper). In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Long Papers, vol. 1, pp. 4619–4629. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1455

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Lin, H., Yang, L., Xu, B. (2021). MUMOR: A Multimodal Dataset for Humor Detection in Conversations. In: Wang, L., Feng, Y., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2021. Lecture Notes in Computer Science(), vol 13028. Springer, Cham. https://doi.org/10.1007/978-3-030-88480-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88480-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88479-6

  • Online ISBN: 978-3-030-88480-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics