Skip to main content

Memetic Federated Learning for Biomedical Natural Language Processing

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13029))

Abstract

Privacy protection is an essential issue in biomedical natural language processing (BioNLP). Recently, some researchers apply federated learning (FL) in BioNLP to protect the privacy of biomedical data. However, their methods are only applicable for small NLP models, whose effectiveness is heavily limited in processing biomedical data. In this paper, we propose a novel memetic federated learning framework named Mem-Fed, which is tailored for federated learning of large-scale NLP models in the biomedical scenario. Experiments with large-scale BioNLP model on the public dataset show that the proposed framework significantly outperforms the state-of-the-art counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alicante, A., Corazza, A., Isgrò, F., Silvestri, S.: Unsupervised entity and relation extraction from clinical records in Italian. Comput. Biol. Med. 72, 263–275 (2016)

    Article  Google Scholar 

  2. Baker, S., et al.: Automatic semantic classification of scientific literature according to the hallmarks of cancer. Bioinform. 32(3), 432–440 (2016)

    Article  Google Scholar 

  3. Boughorbel, S., Jarray, F., Venugopal, N., Moosa, S., Elhadi, H., Makhlouf, M.: Federated uncertainty-aware learning for distributed hospital EHR data. CoRR abs/1910.12191 (2019)

    Google Scholar 

  4. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I.C., Shi, W.: Federated learning of predictive models from federated electronic health records. Int. J. Med. Inform. 112, 59–67 (2018)

    Article  Google Scholar 

  5. Cotta, C., Mathieson, L., Moscato, P.: Memetic algorithms. In: Martí, R., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Heuristics, pp. 607–638 (2018)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, June 2019

    Google Scholar 

  7. Gehrmann, S., et al.: Comparing rule-based and deep learning models for patient phenotyping. arXiv preprint arXiv:1703.08705 (2017)

  8. Hafiane, W., Legrand, J., Toussaint, Y., Coulet, A.: Experiments on transfer learning architectures for biomedical relation extraction. CoRR abs/2011.12380 (2020)

    Google Scholar 

  9. Ju, C., et al.: Privacy-preserving technology to help millions of people: federated prediction model for stroke prevention. CoRR abs/2006.10517 (2020)

    Google Scholar 

  10. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)

    Google Scholar 

  11. Liu, D., Dligach, D., Miller, T.: Two-stage federated phenotyping and patient representation learning. In: Proceedings of the 18th BioNLP Workshop and Shared Task, pp. 283–291, August 2019

    Google Scholar 

  12. Liu, D., Miller, T.A.: Federated pretraining and fine tuning of BERT using clinical notes from multiple silos. CoRR abs/2002.08562 (2020)

    Google Scholar 

  13. Liu, D., Miller, T.A., Sayeed, R., Mandl, K.D.: FADL: federated-autonomous deep learning for distributed electronic health record. CoRR abs/1811.11400 (2018)

    Google Scholar 

  14. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, X.J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, Fort Lauderdale, FL, USA, 20–22 April 2017. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282 (2017)

    Google Scholar 

  15. Moscato, P., et al.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P Report 826, 1989 (1989)

    Google Scholar 

  16. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), June 2018

    Google Scholar 

  17. Ormerod, M., Martínez-del Rincón, J., Robertson, N., McGuinness, B., Devereux, B.: Analysing representations of memory impairment in a clinical notes classification model. In: Proceedings of the 18th BioNLP Workshop and Shared Task, pp. 48–57 (2019)

    Google Scholar 

  18. Peng, Y., Yan, S., Lu, Z.: Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on Ten benchmarking datasets. In: Proceedings of the 18th BioNLP Workshop and Shared Task, pp. 58–65, August 2019

    Google Scholar 

  19. Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237, June 2018

    Google Scholar 

  20. Schumacher, E., Mulyar, A., Dredze, M.: Clinical concept linking with contextualized neural representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8585–8592, July 2020

    Google Scholar 

  21. Shin, H.C., et al.: BioMegatron: larger biomedical domain language model. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4700–4706, November 2020

    Google Scholar 

  22. Tan, C., Jiang, D., Peng, J., Wu, X., Xu, Q., Yang, Q.: A de novo divide-and-merge paradigm for acoustic model optimization in automatic speech recognition. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 3709–3715 (2020)

    Google Scholar 

  23. Tang, B., Cao, H., Wu, Y., Jiang, M., Xu, H.: Recognizing clinical entities in hospital discharge summaries using structural support vector machines with word representation features. BMC Med. Inform. Decis. Mak. 13, 1–10 (2013). BioMed Central

    Google Scholar 

  24. Vaidhya, T., Kaushal, A.: IITKGP at W-NUT 2020 shared task-1: domain specific BERT representation for named entity recognition of lab protocol. In: Xu, W., Ritter, A., Baldwin, T., Rahimi, A. (eds.) Proceedings of the Sixth Workshop on Noisy User-Generated Text, W-NUT@EMNLP 2020 Online, 19 November 2020, pp. 268–272 (2020)

    Google Scholar 

  25. Zhu, H., Jin, Y.: Multi-objective evolutionary federated learning. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1310–1322 (2019)

    Article  Google Scholar 

Download references

Acknowledge

This work was supported by National Natural Science Foundation of China (61872338) and the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (No. 2019BDKFJJ002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, X. et al. (2021). Memetic Federated Learning for Biomedical Natural Language Processing. In: Wang, L., Feng, Y., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2021. Lecture Notes in Computer Science(), vol 13029. Springer, Cham. https://doi.org/10.1007/978-3-030-88483-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88483-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88482-6

  • Online ISBN: 978-3-030-88483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics