Skip to main content

A Compositional Framework for Quantitative Online Monitoring over Continuous-Time Signals

  • Conference paper
  • First Online:
Runtime Verification (RV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12974))

Included in the following conference series:

Abstract

We investigate online monitoring algorithms over dense-time and continuous-time signals for properties written in metric temporal logic (MTL). We consider an abstract algebraic semantics based on complete lattices, which subsumes the Boolean (qualitative) semantics and the real-valued robustness (quantitative) semantics. Our semantics also extends to truth values that are partially ordered and allows the modeling of uncertainty in satisfaction. We propose a compositional approach for the construction of online monitors based on a class of infinite-state deterministic signal transducers that (1) are allowed to produce the output signal with some bounded delay relative to the input signal, and (2) do not introduce unbounded variability in the output signal. A key ingredient of our monitoring framework is a novel efficient algorithm for sliding-window aggregation over dense-time signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, H., Alur, R., Mamouras, K., Mangharam, R., Rodionova, A.: Real-time decision policies with predictable performance. Proc. IEEE Spec. Issue Des. Autom. Cyber-Phys. Syst. 106(9), 1593–1615 (2018). https://doi.org/10.1109/JPROC.2018.2853608

    Article  Google Scholar 

  2. Abbas, H., Rodionova, A., Mamouras, K., Bartocci, E., Smolka, S.A., Grosu, R.: Quantitative regular expressions for arrhythmia detection. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(5), 1586–1597 (2019). https://doi.org/10.1109/TCBB.2018.2885274

    Article  MATH  Google Scholar 

  3. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_21

    Chapter  Google Scholar 

  4. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

    Article  MathSciNet  MATH  Google Scholar 

  6. Alur, R., Fisman, D., Mamouras, K., Raghothaman, M., Stanford, C.: Streamable regular transductions. Theoret. Comput. Sci. 807, 15–41 (2020). https://doi.org/10.1016/j.tcs.2019.11.018

    Article  MathSciNet  MATH  Google Scholar 

  7. Alur, R., Mamouras, K.: An introduction to the StreamQRE language. Dependable Softw. Syst. Eng. 50, 1–24 (2017). https://doi.org/10.3233/978-1-61499-810-5-1

    Article  Google Scholar 

  8. Alur, R., Mamouras, K., Stanford, C.: Automata-based stream processing. In: Leibniz International Proceedings in Informatics (LIPIcs), ICALP 2017, vol. 80, pp. 112:1–112:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.112

  9. Alur, R., Mamouras, K., Stanford, C.: Modular quantitative monitoring. Proc. ACM Progr. Lang. 3(POPL), 50:1–50:31 (2019). https://doi.org/10.1145/3290363

  10. Alur, R., Mamouras, K., Ulus, D.: Derivatives of quantitative regular expressions. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 75–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_4

    Chapter  Google Scholar 

  11. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_21

    Chapter  MATH  Google Scholar 

  12. Bakhirkin, A., Ferrère, T., Maler, O.: Efficient parametric identification for STL. In: HSCC 2018, New York, NY, USA, pp. 177–186. ACM (2018). https://doi.org/10.1145/3178126.3178132

  13. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/logcom/exn075

    Article  MathSciNet  MATH  Google Scholar 

  14. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with events and relations: the SIGNAL language and its semantics. Sci. Comput. Program. 16(2), 103–149 (1991). https://doi.org/10.1016/0167-6423(91)90001-E

    Article  MathSciNet  MATH  Google Scholar 

  15. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design, semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992). https://doi.org/10.1016/0167-6423(92)90005-V

    Article  MATH  Google Scholar 

  16. Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D.A., Travers, C.: Decentralized asynchronous crash-resilient runtime verification. In: Desharnais, J., Jagadeesan, R. (eds.) Leibniz International Proceedings in Informatics (LIPIcs), CONCUR 2016, vol. 59, pp. 16:1–16:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.16

  17. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language for real-time programming. In: POPL 1987, New York, NY, USA, pp. 178–188. ACM (1987). https://doi.org/10.1145/41625.41641

  18. Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric temporal logic with quantitative semantics. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 383–403. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_21

    Chapter  Google Scholar 

  19. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30 (2017). https://doi.org/10.1007/s10703-017-0286-7

    Article  MATH  Google Scholar 

  20. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_19

    Chapter  Google Scholar 

  21. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17

    Chapter  Google Scholar 

  22. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19

    Chapter  Google Scholar 

  23. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  24. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_10

    Chapter  Google Scholar 

  25. D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 68–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_7

    Chapter  MATH  Google Scholar 

  26. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11940197_12

    Chapter  Google Scholar 

  27. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009). https://doi.org/10.1016/j.tcs.2009.06.021

    Article  MathSciNet  MATH  Google Scholar 

  28. Faulhaber, J.: Boost library documentation: interval container library (2021). https://www.boost.org/doc/libs/1_76_0/libs/icl/doc/html/index.html. Accessed 20 Aug 2021

  29. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_24

    Chapter  Google Scholar 

  30. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based monitoring. CoRR abs/1711.03829 (2017). http://arxiv.org/abs/1711.03829

  31. Ferrère, T., Maler, O., Ničković, D., Pnueli, A.: From real-time logic to timed automata. J. ACM 66(3), 19:1–19:31 (2019). https://doi.org/10.1145/3286976

  32. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_16

    Chapter  Google Scholar 

  33. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements for automotive systems. In: Frehse, G., Althoff, M. (eds.) ARCH@CPSWeek 2014, 2015. EPiC Series in Computing, vol. 34, pp. 25–30. EasyChair (2014). https://doi.org/10.29007/xwrs

  34. Hoxha, B., Bach, H., Abbas, H., Dokhanchi, A., Kobayashi, Y., Fainekos, G.: Towards formal specification visualization for testing and monitoring of cyber-physical systems. In: International Workshop on Design and Implementation of Formal Tools and Systems. DIFTS 2014 (2014)

    Google Scholar 

  35. Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: An algebraic framework for runtime verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(11), 2233–2243 (2018). https://doi.org/10.1109/TCAD.2018.2858460

    Article  Google Scholar 

  36. Kahn, G.: The semantics of a simple language for parallel programming. Inf. Process. 74, 471–475 (1974)

    MathSciNet  MATH  Google Scholar 

  37. Kong, L., Mamouras, K.: StreamQL: a query language for processing streaming time series. Proc. ACM Program. Lang. 4(OOPSLA), 183:1–183:32 (2020). https://doi.org/10.1145/3428251

  38. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

    Article  Google Scholar 

  39. Lemire, D.: Streaming maximum-minimum filter using no more than three comparisons per element. CoRR abs/cs/0610046 (2006). http://arxiv.org/abs/cs/0610046

  40. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: efficient evaluation of sliding-window aggregates over data streams. SIGMOD Rec. 34(1), 39–44 (2005). https://doi.org/10.1145/1058150.1058158

    Article  Google Scholar 

  41. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  42. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005). https://doi.org/10.1007/11603009_2

    Chapter  Google Scholar 

  43. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006). https://doi.org/10.1007/11867340_20

    Chapter  MATH  Google Scholar 

  44. Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-response properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 95–107. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3_12

    Chapter  Google Scholar 

  45. Mamouras, K., Chattopadhyay, A., Wang, Z.: Algebraic quantitative semantics for efficient online temporal monitoring. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS, vol. 12651, pp. 330–348. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_18

    Chapter  MATH  Google Scholar 

  46. Mamouras, K., Raghothaman, M., Alur, R., Ives, Z.G., Khanna, S.: StreamQRE: modular specification and efficient evaluation of quantitative queries over streaming data. In: PLDI 2017, New York, NY, USA, pp. 693–708. ACM (2017). https://doi.org/10.1145/3062341.3062369

  47. Mamouras, K., Wang, Z.: Online signal monitoring with bounded lag. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2020). https://doi.org/10.1109/TCAD.2020.3013053

    Article  Google Scholar 

  48. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_34

    Chapter  Google Scholar 

  49. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0_11

    Chapter  MATH  Google Scholar 

  50. Sánchez, C.: Online and offline stream runtime verification of synchronous systems. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_9

    Chapter  MATH  Google Scholar 

  51. The Valgrind Developers: Valgrind: an instrumentation framework for building dynamic analysis tools (2021). https://valgrind.org/. Accessed 20 Aug 2021

  52. Ulus, D.: The Reelay monitoring tool (2020). https://doganulus.github.io/reelay/. Accessed 20 Aug 2020

  53. Waga, M.: Online quantitative timed pattern matching with semiring-valued weighted automata. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29662-9_1

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported in part by US National Science Foundation award 2008096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Mamouras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mamouras, K., Chattopadhyay, A., Wang, Z. (2021). A Compositional Framework for Quantitative Online Monitoring over Continuous-Time Signals. In: Feng, L., Fisman, D. (eds) Runtime Verification. RV 2021. Lecture Notes in Computer Science(), vol 12974. Springer, Cham. https://doi.org/10.1007/978-3-030-88494-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88494-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88493-2

  • Online ISBN: 978-3-030-88494-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics