Skip to main content

Entropy-Based Learning of Compositional Models from Data

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2021)

Abstract

We investigate learning of belief function compositional models from data using information content and mutual information based on two different definitions of entropy proposed by Jiroušek and Shenoy in 2018 and 2020, respectively. The data consists of 2,310 randomly generated basic assignments of 26 binary variables from a pairwise consistent and decomposable compositional model. We describe results achieved by three simple greedy algorithms for constructing compositional models from the randomly generated low-dimensional basic assignments.

Supported by the Czech Science Foundation – Grant No. 19-06569S (to the first two authors), and by the Harper Professorship (to the third author).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In our experiments, \(MI_A\) was negative in about 12% of situations, whilst \(MI_P\) was negative only in 0.1% of cases.

References

  1. Cobb, B.R., Shenoy, P.P.: On the plausibility transformation method for translating belief function models to probability models. Int. J. Approximate Reasoning 41(3), 314–340 (2006)

    Article  MathSciNet  Google Scholar 

  2. Dubois, D., Prade, H.: Properties of measures of information in evidence and possibility theories. Fuzzy Sets Syst. 24(2), 161–182 (1987)

    Article  MathSciNet  Google Scholar 

  3. Jiroušek, R.: Composition of probability measures on finite spaces. In: Geiger, D., Shenoy, P.P. (eds.) Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI 1997), pp. 274–281. Morgan Kaufmann (1997)

    Google Scholar 

  4. Jiroušek, R.: Foundations of compositional model theory. Int. J. Gener. Syst. 40(6), 623–678 (2011)

    Article  MathSciNet  Google Scholar 

  5. Jiroušek, R.: On two composition operators in Dempster-Shafer theory. In: Augustin, T., Doria, S., Miranda, E., Quaeghebeur, E. (eds.) Proceedings of the 9th International Symposium on Imprecise Probability: Theories and Applications (ISIPTA 2015), pp. 157–165. Society for Imprecise Probability: Theories and Applications (2015)

    Google Scholar 

  6. Jiroušek, R., Kratochvíl, V.: Foundations of compositional models: structural properties. Int. J. Gener. Syst. 44(1), 2–25 (2015)

    Article  MathSciNet  Google Scholar 

  7. Jiroušek, R., Shenoy, P.P.: Compositional models in valuation-based systems. Int. J. Approximate Reasoning 55(1), 277–293 (2014)

    Article  MathSciNet  Google Scholar 

  8. Jiroušek, R., Shenoy, P.P.: A new definition of entropy of belief functions in the Dempster-Shafer theory. Int. J. Approximate Reasoning 92(1), 49–65 (2018)

    Article  MathSciNet  Google Scholar 

  9. Jiroušek, R., Shenoy, P.P.: On properties of a new decomposable entropy of Dempster-Shafer belief functions. Int. J. Approximate Reasoning 119(4), 260–279 (2020)

    Article  MathSciNet  Google Scholar 

  10. Jousselme, A.L., Liu, C., Grenier, D., Bossé, E.: Measuring ambiguity in the evidence theory. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 36(5), 890–903 (2006)

    Article  Google Scholar 

  11. Klir, G.J., Lewis III, H.W.: Remarks on “Measuring ambiguity in the evidence theory”. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 38(4), 995–999 (2008)

    Google Scholar 

  12. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 76–86 (1951)

    Article  MathSciNet  Google Scholar 

  13. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  14. Shenoy, P.P.: Conditional independence in valuation-based systems. Int. J. Approximate Reasoning 10(3), 203–234 (1994)

    Article  MathSciNet  Google Scholar 

  15. Smets, P.: Constructing the pignistic probability function in a context of uncertainty. In: Henrion, M., Shachter, R., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence, vol. 5, pp. 29–40. Elsevier (1990)

    Google Scholar 

  16. Zhou, K., Martin, A.: ibelief: belief function implementation (2021). https://CRAN.R-project.org/package=ibelief, R package version 1.3.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Kratochvíl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiroušek, R., Kratochvíl, V., Shenoy, P.P. (2021). Entropy-Based Learning of Compositional Models from Data. In: Denœux, T., Lefèvre, E., Liu, Z., Pichon, F. (eds) Belief Functions: Theory and Applications. BELIEF 2021. Lecture Notes in Computer Science(), vol 12915. Springer, Cham. https://doi.org/10.1007/978-3-030-88601-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88601-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88600-4

  • Online ISBN: 978-3-030-88601-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics