Abstract
BL-algebras are the algebraic semantics for Hájek’s Basic Logic BL, the logic of all continuous t-norms and their residua. Every BL-chain can be decomposed (up to isomorphism) as an ordinal sum of non-trivial Wajsberg hoops - called components - with the first bounded. In this paper we study the amalgamation property for the varieties of BL-algebras generated by one BL-chain with finitely many components.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\varGamma \) establishes a categorical equivalence between abelian l-groups with a strong order unit \((\mathcal {G},u)\) and MV-algebras, by equipping the interval [0, u] of \(\mathcal {G}\) with MV-algebraic operations obtained by truncation of the group ones. On arrows \(\varGamma \) acts by restriction.
- 2.
Note that every non-trivial totally ordered cancellative hoop \(\mathcal {A}\) does not have rank, since \(\mathcal {A}/Rad(\mathcal {A})\) is an infinite cancellative hoop.
- 3.
To use this proof strategy is essential that \(k\ge 4\).
- 4.
To use this proof strategy it is essential that \(h\ge 2\). For every \(l(C_i)\) (\(m(D_i)\), respectively), the elements are ordered as in the chain \(l(\mathcal {C}_i)\) (\(m(\mathcal {D}_i)\), respectively).
- 5.
Here \(x\Leftrightarrow y\) stands for \((x\Rightarrow y)*(y\Rightarrow x)\). Moreover \(x\uplus y{\mathop {=}\limits ^{\text {def}}}(x\Rightarrow (x*y))\Rightarrow y\), whilst nx is defined inductively by \(0x=0\) and \(n(x)=(n-1)x\uplus x\).
- 6.
The assumption that \(Ch(\mathcal {A})\) does not contain trivial chains is essential. Indeed, if \(\mathcal {A}\) is non-trivial, then \(\mathbf {ISP}_u(\mathcal {A})\) does not contain trivial algebras.
References
Aguzzoli, S., Bianchi, M.: On linear varieties of MTL-algebras. Soft Comput. 23(7), 2129–2146 (2018). https://doi.org/10.1007/s00500-018-3423-3
2 Aguzzoli, S., Bianchi, M.: Finite model property and varieties of BL-algebras. In: Computational Intelligence and Mathematics for Tackling Complex Problems 3, Studies in Computational Intelligence, vol. 959, pp. 22–30. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-74970-5_4
Aguzzoli, S., Bianchi, M.: Strictly join irreducible varieties of BL-algebras: the missing pieces. Fuzzy Sets Syst. 418, 84–100 (2021). https://doi.org/10.1016/j.fss.2020.12.008
Aglianò, P., Ferreirim, I., Montagna, F.: Basic hoops: an algebraic study of continuous \(t\)-norms. Studia Logica 87, 73–98 (2007). https://doi.org/10.1007/s11225-007-9078-1
Aglianò, P., Montagna, F.: Varieties of BL-algebras I: general properties. J. Pure Appl. Algebra 181(2–3), 105–129 (2003). https://doi.org/10.1016/S0022-4049(02)00329-8
Aglianò, P., Panti, G.: Geometrical methods in Wajsberg hoops. J. Algebra 256(2), 352–374 (2002). https://doi.org/10.1016/S0021-8693(02)00085-6
Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, vol. 78, Springer, Heidelberg (1981). http://tinyurl.com/zaxeopo
Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, vol. 7. Kluwer Academic Publishers, Dordrecht (1999)
Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic Fuzzy Logic is the logic of continuous t-norms and their residua. Soft Comput. 4(2), 106–112 (2000). https://doi.org/10.1007/s005000000044
Cintula, P., Hájek, P., Noguera, C.: Handbook of Mathematical Fuzzy Logic, vol. 1 and 2. College Publications, London (2011)
Cortonesi, T., Marchioni, E., Montagna, F.: Quantifier elimination and other model-theoretic properties of BL-algebras. Notre Dame J. Formal Logic 52, 339–379 (2011). https://doi.org/10.1215/00294527-1499336
Esteva, F., Godo, L., Hájek, P., Montagna, F.: Hoops and fuzzy logic. J. Log. Comput. 13(4), 532–555 (2003). https://doi.org/10.1093/logcom/13.4.532
Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic, vol. 4. Kluwer Academic Publishers, Dordrecht (1998)
Jenei, S.: On the structure of rotation-invariant semigroups. Arch. Math. Log. 42, 489–514 (2003). https://doi.org/10.1007/s00153-002-0165-8
Metcalfe, G., Montagna, F., Tsinakis, C.: Amalgamation and interpolation in ordered algebras. J. Alg. 402, 21–82 (2014). https://doi.org/10.1016/j.jalgebra.2013.11.019
Montagna, F.: Interpolation and Beth’s property in propositional many-valued logics: a semantic investigation. Ann. Pure. Appl. Log. 141(1–2), 148–179 (2006). https://doi.org/10.1016/j.apal.2005.11.001
Mundici, D.: Free products in the category of abelian l-groups with strong unit. J. Algebra 113(1), 89–109 (1988). https://doi.org/10.1016/0021-8693(88)90185-8
Noguera, C., Esteva, F., Gispert, J.: Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear semihoops. Arch. Math. Logic 44(7), 869–886 (2005). https://doi.org/10.1007/s00153-005-0276-0
Di Nola, A., Lettieri, A.: One chain generated varieties of MV-Algebras. J. Alg. 225(2), 667–697 (2000). https://doi.org/10.1006/jabr.1999.8136
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Aguzzoli, S., Bianchi, M. (2021). Amalgamation Property for Varieties of BL-algebras Generated by One Chain with Finitely Many Components. In: Fahrenberg, U., Gehrke, M., Santocanale, L., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2021. Lecture Notes in Computer Science(), vol 13027. Springer, Cham. https://doi.org/10.1007/978-3-030-88701-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-88701-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88700-1
Online ISBN: 978-3-030-88701-8
eBook Packages: Computer ScienceComputer Science (R0)