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APPROXIMATING APPROXIMATE REASONING: FUZZY SETS

AND THE ERSHOV HIERARCHY

NIKOLAY BAZHENOV, MANAT MUSTAFA, SERGEI OSPICHEV,
AND LUCA SAN MAURO

Abstract. Computability theorists have introduced multiple hierarchies to
measure the complexity of sets of natural numbers. The Kleene Hierarchy
classifies sets according to the first-order complexity of their defining formulas.
The Ershov Hierarchy classifies ∆0

2
sets with respect to the number of mistakes

that are needed to approximate them. Biacino and Gerla extended the Kleene
Hierarchy to the realm of fuzzy sets, whose membership functions range in a
complete lattice L (e.g., the real interval [0; 1]R). In this paper, we combine
the Ershov Hierarchy and fuzzy set theory, by introducing and investigating
the Fuzzy Ershov Hierarchy. In particular, we focus on the fuzzy n-c.e. sets
which form the finite levels of this hierarchy. Intuitively, a fuzzy set is n-c.e.
if its membership function can be approximated by changing monotonicity at
most n−1 times. We prove that the Fuzzy Ershov Hierarchy does not collapse;
that, in analogy with the classical case, each fuzzy n-c.e. set can be represented
as a Boolean combination of fuzzy c.e. sets; but that, contrary to the classical
case, the Fuzzy Ershov Hierarchy does not exhaust the class of all ∆0

2
fuzzy

sets.

1. Introduction

Crisp properties on a given domain D — i.e., properties whose membership
functions range in the set {0, 1} — can be naturally identified with subsets of D.
By adopting this perspective, one may regard classical computability theory as the
study of the complexity of crisp properties on the set ω of the natural numbers:
e.g., “being even” and “being the code of a Turing machine which halts on a blank
tape” are examples of, respectively, a decidable crisp property and an undecidable
one.

Computability theorists have introduced multiple hierarchies to measure the
complexity of crisp objects. Two such hierarchies will be relevant for the present
paper. The Kleene Hierarchy classifies subsets of ω according to the first-order
complexity of their defining formulas within arithmetic. The Ershov Hierarchy
concentrates on an important initial segment of the Kleene Hierarchy, that of ∆0

2

sets (which coincide with the sets that are computable in the limit), by classifying
such sets with respect to the number of mistakes that are needed to approximate
them.

Fuzzy sets, introduced by Zadeh [18] and later developed into a broad area of
research, allow to mathematically study graded properties, such as those properties
with blurry boundaries, and to extend the scope of logic to approximate reasoning.

Key words and phrases. Fuzzy set, computability theory, n-computably enumerable set, Ershov
hierarchy.
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It is natural to ask how to introduce computability theory within fuzzy mathe-
matics. A first approach is to define fuzzy algorithms (as in, e.g., [19, 14, 17, 1]), and
then rebuild computability theory by permitting fuzzy computations. A parallel
approach is to maintain ordinary Turing machines and just adopt them to calibrate
the complexity of fuzzy sets. After all, well-established computability-theoretic hi-
erarchies could be extended to the realm of fuzzy objects. This is the case for the
Kleene Hierarchy, which has been extended to fuzzy sets by Biacino and Gerla [2],
see also [7, 8, 9].

In this paper, we introduce and investigate the Fuzzy Ershov Hierarchy. That
is, we focus on the complexity of approximating fuzzy objects, which belong to the
class ∆0

2. The key idea for evaluating this complexity is that of a mind change,
which is borrowed from Ershov [4, 5, 6]. In the classical setting, an approximation
to a set A changes its mind on a given input x by switching its guess on whether
x belongs to A or not. Moving to fuzzy sets, mind changes will be formalized
by changes in the monotonicity of approximating functions. We will prove that,
by allowing more and more mind changes, we will be able to capture larger and
larger sub-classes of ∆0

2 fuzzy sets. In particular, it will follow that there are fuzzy
sets which cannot be approximated only from above or below, but they require
approximations which oscillate “up and down” on the membership degree of x, for
some inputs x.

The paper is arranged as follows. In Section 2, we recall preliminaries concerning
fuzzy sets, effective reals, and the Ershov Hierarchy. In Section 3, we introduce the
Fuzzy Ershov Hierarchy, and we prove the main results of the paper. First, the
hierarchy does not collapse (Proposition 3.2). Second, in analogy with the classical
case, sets lying at the so-called finite levels of the Fuzzy Ershov Hierarchy can
be represented as Boolean combinations of fuzzy sets belonging to the first level,
i.e. fuzzy c.e. sets (Theorem 3.1). Third, contrary to the classical case, the Fuzzy
Ershov Hierarchy does not exhaust the class of all ∆0

2 fuzzy sets (Proposition 3.3).
In the last section, we conclude by briefly discussing two natural ways of broadening
the Fuzzy Ershov Hierarchy.

2. Preliminaries

We assume that the reader is familiar with the basic notions of computability
theory. For the background, we refer to the monographs [13, 15]. The preliminaries
on fuzzy sets mainly follow [7].

As usual, one fixes an effective bijection ν : Q → ω. This convention allows to
transfer familiar computability-theoretic notions to the rationals: for example, a
crisp set X ⊆ Q is computable iff its image ν(X) is a computable subset of ω.

Note that, as is custom in computability theory, this paper uses the term com-

putably enumerable (or c.e.) in place of recursively enumerable. For a set X , by
|X | we denote the cardinality of X .

2.1. Fuzzy Subsets. Let L be a complete lattice. A fuzzy subset (or an L-subset)
of ω is an arbitrary function A : ω → L. In this paper, for the sake of simplicity,
we consider the case when L is equal to the real interval [0; 1]R. A fuzzy subset A
is crisp if A(x) ∈ {0, 1} for all x ∈ ω.

As mentioned in the introduction, a fundamental tool for classifying the complex-
ity of crisp subsets of ω is provided by the Kleene Arithmetical Hierarchy [10] (see,
e.g., Chapter 4 in [15] for a detailed discussion). Biacino and Gerla [2] extended the
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Kleene Hierarchy to fuzzy subsets. In our paper, we work only with fuzzy subsets
belonging to the levels Σ0

1, Π
0
1, and ∆0

2 of the Kleene Hierarchy. Hence, we give
formal definitions only for these levels. For more details, the reader is referred to [2]
and § 11.5 in [7]. By [0; 1]Q we denote the set of all rational numbers q such that
0 ≤ q ≤ 1.

Definition 2.1 ([2], see also § 11.2 in [7]). A fuzzy set A is computably enumerable

(or belongs to the class Σ0
1) if there is a computable function f : ω × ω → [0, 1]Q

such that, for all x ∈ ω, we have:

(a) lims→∞ f(x, s) = A(x);
(b) (∀s)(f(x, s + 1) ≥ f(x, s)).

We say that such function f is a Σ0
1-approximation of the fuzzy set A.

Note that without loss of generality, one can always assume that in the definition
above, f(x, 0) equals 0. Hence, fuzzy c.e. sets may intuitively be regarded as fuzzy
sets which can be approximated “from below”, in the sense that approximations to
fuzzy c.e. sets can only increase over time.

If A and B are fuzzy sets, then one can define set-theoretic operations on them:

• Union: (A ∪B)(x) = max{A(x), B(x)}.
• Intersection: (A ∩B)(x) = min{A(x), B(x)}.
• Complement: A(x) = 1−A(x).

A fuzzy set A is co-computably enumerable (or belongs to the class Π0
1) if its

complement A is c.e. Equivalently (see Theorem 5.2 in [7, Chap. 11]), A is co-c.e.
if and only if there is a computable function f : ω2 → [0; 1]Q such that, for all x ∈ ω,
we have:

(a) lims f(x, s) = A(x);
(b′) (∀s)(f(x, s + 1) ≤ f(x, s)).

In the Π0
1 case, we may assume that f(x, 0) = 1, for all x. So, fuzzy co-c.e. sets

may be regarded as fuzzy sets which can be approximated “from above”.
Finally, the main object of study of this paper are ∆0

2 fuzzy sets. A fuzzy set A
belongs to the class ∆0

2 if A lies in both classes Σ0
2 and Π0

2 of the Kleene Hierarchy.
In this paper, we adopt the following equivalent definition (see Proposition 5.4 in
[7, Chap. 11]).

Definition 2.2. A fuzzy set A is ∆0
2 if and only if there is a computable function

f : ω2 → [0; 1]Q such that lims f(x, s) = A(x), for all x ∈ ω. We call such function
f(x, s) a ∆0

2-approximation of the fuzzy set A.

2.2. Effective Reals. Here we briefly discuss some simple results which connect
fuzzy subsets of ω with effectively approximable reals. We refer to Chapter 5 in [3]
for the detailed background.

We consider reals α ∈ [0; 1]R. A real α is left-c.e. if the set {q ∈ Q : q < α} is
c.e. A real α is right-c.e. if the set {q ∈ Q : q > α} is c.e. By working with the
definitions, it is not hard to prove the following result.

Proposition 2.1. Let A be a fuzzy subset of ω.

(1) A is c.e. if and only if the reals A(k), k ∈ ω, are uniformly left-c.e., i.e.

the set {(k, q) ∈ ω ×Q : q < αk} is c.e.

(2) A is co-c.e. if and only if the reals A(k), k ∈ ω, are uniformly right-c.e.,

i.e. the set {(k, q) ∈ ω ×Q : q > αk} is c.e.
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A real α is ∆0
2 if there is a computable sequence (qs)s∈ω of rationals such that

α = lims qs (see, e.g., Theorem 5.1.3 in [3]). We also observe the following, which
is an immediate consequence of the definitions:

Proposition 2.2. A fuzzy set A is ∆0
2 if and only if the reals A(k), k ∈ ω, are

uniformly ∆0
2, i.e., there is a computable sequence (qk,s)k,s∈ω of rationals such that

A(k) = lims qk,s, for all k.

2.3. The Classical Ershov Hierarchy. We give few preliminaries on the Ershov
Hierarchy [4, 5, 6]; to distinguish it from the fuzzy analogue introduced below, we
refer to this hierarchy as the Classical Ershov Hierarchy. For the sake of simplicity,
here we discuss only the finite levels of the hierarchy (these finite levels are also
called Difference Hierarchy in the literature). In this section, all subsets of ω are
crisp.

Definition 2.3. Let n ≥ 1. A set A ⊆ ω is n-computably enumerable (or n-c.e., or
belongs to the class Σ−1

n ) if there is a computable function f : ω × ω → {0, 1} such
that for all x ∈ ω, we have

• lims f(x, s) = A(x);
• f(x, 0) = 0;
• |{s : f(x, s) 6= f(x, s+ 1)}| ≤ n.

A set A is co-n-computably enumerable (or co-n-c.e., or belongs to the class Π−1
n )

if its complement A is n-c.e.

Historically, the notion of n-c.e. sets was introduced by Putnam [12] and Gold [11].
Note that

Σ−1
n ∪ Π−1

n ⊆ Σ−1
n+1 ∩ Π−1

n+1.

Ershov [4] proved that for each n ≥ 1, there exists an n-c.e. set Sn such that every
n-c.e. set A is many-one reducible to Sn. In addition, Sn does not belong to Π−1

n .
In particular, this implies that the Classical Ershov Hierarchy does not collapse.

Sets from the class Σ−1
n can be represented as Boolean combinations of c.e. sets:

Theorem 2.1 ([4]). Let k be a natural number. A set A ⊆ ω is (2k + 1)-c.e. if

and only if there are c.e. sets W1,W2, . . . ,W2k−1,W2k,W2k+1 such that

A = (W1 \W2) ∪ (W3 \W4) ∪ · · · ∪ (W2k−1 \W2k) ∪W2k+1.

A set A is (2k+2)-c.e. if and only if there are c.e. sets W1,W2, . . . ,W2k+1,W2k+2

such that

A = (W1 \W2) ∪ (W3 \W4) ∪ · · · ∪ (W2k−1 \W2k) ∪ (W2k+1 \W2k+2).

We refer the reader to the survey [16] for more details on the Classical Ershov
Hierarchy.

3. Fuzzy Ershov Hierarchy

In this section, we extend the classical Difference Hierarchy to the class of fuzzy
subsets of ω (see Definition 3.2 below). We establish some initial properties of this
hierarchy: the hierarchy does not collapse (Subsection 3.1); it is connected to the
Boolean combinations of fuzzy c.e. sets (Subsection 3.2); the introduced levels of
the hierarchy do not exhaust all fuzzy ∆0

2 sets (Subsection 3.3).
We begin by illustrating the intuition behind Definition 3.2 with the following

example. A fuzzy ∆0
2 set A is called 3-computably enumerable if it possesses a
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∆0
2-approximation f(x, s), which “changes its mind” at most two times. So, for an

element x ∈ ω, the worst case behavior looks like this:

• First, our approximation (non-strictly) increases — i.e. there is a stage s1
such that f(x, s) ≤ f(x, s+ 1), for all s < s1.

• Second, the approximation starts to decrease until some stage s2 > s1:
f(x, s1) > f(x, s1 + 1) and f(x, s) ≥ f(x, s+ 1), for s1 < s < s2.

• Then the final change of mind happens: the approximation will forever
increase — f(x, s2) < f(x, s2 + 1) and f(x, s) ≤ f(x, s+ 1) for all s > s2.

In order to make this idea formal, we introducemind change functions, which “track
down” the described mind changes.

Definition 3.1. Let f be a total function from ω×ω to [0; 1]Q. Its Σ-mind change

function mf
Σ : ω × ω → {−1, 1} is defined as follows.

(1) mf
Σ(x, 0) = 1.

(2) Suppose that mf
Σ(x, s) = 1.

• If f(x, s) ≤ f(x, s+ 1), then mf
Σ(x, s+ 1) = 1.

• If f(x, s) > f(x, s+ 1), then mf
Σ(x, s+ 1) = −1.

(3) Suppose that mf
Σ(x, s) = −1.

• If f(x, s) ≥ f(x, s+ 1), then mf
Σ(x, s+ 1) = −1.

• If f(x, s) < f(x, s+ 1), then mf
Σ(x, s+ 1) = 1.

The Π-mind change function mf
Π(x, s) is defined similarly to mf

Σ, with the following

key modification: we put mf
Π(x, 0) = −1.

Notice the following: if a function f is computable, then both mf
Σ and mf

Π are
also computable. Now we are ready to give the main definition.

Definition 3.2. Let n be a non-zero natural number. A fuzzy set A is n-compu-

tably enumerable if there is a computable function f : ω×ω → [0, 1]Q such that for
all x ∈ ω, we have:

• lims f(x, s) = A(x);
• f(x, 0) = 0;

• |{s ∈ ω : mf
Σ(x, s+ 1) 6= mf

Σ(x, s)}| ≤ n− 1.

A fuzzy set A is co-n-computably enumerable if its complement A is n-c.e.

Note that 1-c.e. fuzzy sets are precisely the c.e. sets from Definition 2.1. In
addition, the following fact is immediate.

Proposition 3.1. Let n ≥ 1. A fuzzy set A is co-n-c.e. if and only if there is a

computable function f : ω × ω → [0, 1]Q such that for all x ∈ ω, we have:

• lims f(x, s) = A(x);
• f(x, 0) = 1;

• |{s ∈ ω : mf
Π(x, s+ 1) 6= mf

Π(x, s)}| ≤ n− 1.

3.1. The Hierarchy Does Not Collapse. In order to show the non-collapse of
the hierarchy, it is sufficient to prove the following:

Proposition 3.2. Let A be a crisp subset of ω. Then A is n-c.e. in the Classical

Ershov Hierarchy if and only if A is n-c.e. in the Fuzzy Ershov Hierarchy. A

similar fact is true for co-n-c.e. sets.
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Indeed, since the Classical Difference Hierarchy does not collapse, Proposition 3.2
implies that our hierarchy is also non-collapsing.

of Proposition 3.2. (⇒). Suppose that A is n-c.e. in the classical sense. We fix a
computable function f : ω2 → {0, 1} satisfying the conditions from Definition 2.3.
It is clear that f(x, s) is a ∆0

2-approximation of A, treated as a fuzzy ∆0
2 set.

For an element x ∈ ω, consider all stages s1 < s2 < · · · < sk (note that k ≤ n)
such that f(x, si) 6= f(x, si + 1). A straightforward analysis shows the following:

• If s ≤ s1, then f(x, s) = 0 and mf
Σ(x, s) = 1.

• If s2ℓ+1 + 1 ≤ s ≤ s2ℓ+2, then f(x, s) = 1 and mf
Σ(x, s) = 1.

• If s2ℓ+2 + 1 ≤ s ≤ s2ℓ+3, then f(x, s) = 0 and mf
Σ(x, s) = −1.

This implies that |{s : mf
Σ(x, s+ 1) 6= mf

Σ(x, s)}| ≤ k− 1 ≤ n− 1. We deduce that
the approximation f witnesses that the set A is fuzzy n-c.e.

(⇐). Suppose that a crisp A is fuzzy n-c.e. Fix a ∆0
2-approximation f : ω2 →

[0; 1]Q satisfying Definition 3.2. We define a new approximation

g(x, s) =

{

1, if f(x, s) > 1/2,

0, if f(x, s) ≤ 1/2.

Since A is crisp, it is clear that A(x) = lims g(x, s). Notice that g(x, 0) = f(x, 0) =
0.

For an element x ∈ ω, consider all stages s1 < s2 < · · · < sk such that g(x, si) 6=
g(x, si + 1). For i ≤ k, one can show the following:

• If i = 2ℓ+1, then f(x, si) ≤ 1/2, f(x, si+1) > 1/2, and mf
Σ(x, si +1) = 1.

• If i = 2ℓ+2, then f(x, si) > 1/2, f(x, si+1) ≤ 1/2, and mf
Σ(x, si+1) = −1.

In turn, this implies k − 1 ≤ |{s : mf
Σ(x, s + 1) 6= mf

Σ(x, s)}| ≤ n − 1. Hence,
k ≤ n, and the function g(x, s) witnesses that the set A is n-c.e. in the classical
sense. � �

3.2. Boolean Combinations of Fuzzy C.E. Sets. We show that similarly to
the Classical Ershov Hierarchy (Theorem 2.1), n-c.e. fuzzy sets admit natural
presentations via Boolean combinations of c.e. sets.

Theorem 3.1. Let n ∈ {2k + 1, 2k + 2}. A fuzzy set C is n-c.e. if and only if

there are fuzzy c.e. sets A1, B1, A2, B2, . . . , Ak+1, Bk+1 such that:

• C = (A1 ∩B1) ∪ (A2 ∩B2) ∪ · · · ∪ (Ak+1 ∩Bk+1);
• if n = 2k + 1, then Bk+1 = ∅.

Proof. (⇒). Let f(x, s) be a ∆0
2-approximation which witnesses the fact that C is

n-c.e. We define the desired fuzzy c.e. sets Ai and Bi via their Σ0
1-approximations

hAi
and hBi

(in the sense of Definition 2.1), respectively.
The intuition behind these c.e. sets is as follows. For an element x ∈ ω, we split

ω into disjoint intervals: [0; a0), [a0; b0), [b0; a1), [a1; b1), etc. Our function f(x, ·)
(non-strictly) increases on the intervals [0; a0), [b0; a1), [b1; a2), etc. The function
decreases on the rest of the intervals.

• The approximation hA1
of the set A1 looks like this: it copies f(x, ·) on the

interval [0; a0), and then stabilizes, i.e. hA1
(x, s) = hA1

(x, a0 − 1) for all
s ≥ a0.
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• The function hB1
(x, ·) equals zero on [0; a0). Then it copies 1 − f(x, ·) on

the interval [a0; b0). After that, hB1
(x, ·) equals one.

• The function hA2
equals zero on [0; b0). Then it copies f(x, ·) on the interval

[b0; a1); after that hA2
stabilizes. Et cetera.

Formally speaking, for a non-zero i ≤ k + 1, we define:

hAi
(x, s) =











0, if |{t ≤ s : mf
Σ(x, t+ 1) 6= mf

Σ(x, t)}| < 2i− 2,

f(x, s), if |{t ≤ s : mf
Σ(x, t+ 1) 6= mf

Σ(x, t)}| = 2i− 2,

hAi
(x, s− 1), otherwise;

hBi
(x, s) =











0, if |{t ≤ s : mf
Σ(x, t+ 1) 6= mf

Σ(x, t)}| < 2i− 1,

1− f(x, s), if |{t ≤ s : mf
Σ(x, t+ 1) 6= mf

Σ(x, t)}| = 2i− 1,

1, otherwise.

It is not hard to see that these approximations induce fuzzy c.e. sets. In addition,
if n = 2k + 1, then Bk+1(x) = 0 for all x.

Let D be the fuzzy set (A1 ∩B1)∪ · · · ∪ (Ak+1 ∩Bk+1). We consider its natural
∆0

2-approximation

(1) hD(x, s) = max{min{hAi
(x, s), 1 − hBi

(x, s)} : 1 ≤ i ≤ k + 1}.

Consider the value v∗ = |{t ∈ ω : mf
Σ(x, t+ 1) 6= mf

Σ(x, t)}|.
If v∗ = 2i − 2, then there is a stage s∗ such that for all s ≥ s∗, we have

hD(x, s) = hAi
(x, s) = f(x, s). This implies that D(x) = C(x).

If v∗ = 2i−1, then consider the highest index s0 such that hAi
(x, s0) = f(x, s0).

Then for every s ≥ s0+1, we have hAi
(x, s) = f(x, s0), hBi

(x, s) = 1− f(x, s), and

hD(x, s) = min(hAi
(x, s), 1− hBi

(x, s)) = min(f(x, s0), f(x, s)) = f(x, s).

Again, D(x) = C(x). We deduce that the fuzzy sets C and D are equal.

(⇐). Let D be a fuzzy ∆0
2 set defined via the approximation hD from (1). We

prove that this approximation hD witnesses the fact that D is n-c.e.
First, we note the following easy observation (it follows from computable enu-

merability of fuzzy sets Ai and Bi):

(∗) If 1 − hBi
(x, s0) < hAi

(x, s0) for some s0, then we have 1 − hBi
(x, s) <

hAi
(x, s) for all s ≥ s0.

An informal intuition concerning further proof is as follows. Every (approximation
of the) real (Ai ∩ Bi)(x) can be treated as a “hill”: first we go up, copying the
function hAi

(x, ·). When we see the inequality 1 − hBi
(x, s0) < hAi

(x, s0), we can
only go down. Coming back to the whole picture of hD: whenever the mind-change
function mhD

Σ (x, ·) changes from +1 to −1, it happens because we encountered the
top of one of the “hills”.

At a stage s, consider the following sets: Xs = {i : 1 − hBi
(x, s) < hAi

(x, s)}
and Ys = {1, 2, . . . , k + 1} \Xs. Observation (∗) implies that Xs ⊆ Xs+1 for every
s. In addition, X0 = ∅.

It is not hard to deduce the following equation:

hD(x, s) = max{max{1− hBi
(x, s) : i ∈ Xs},max{hAi

(x, s) : i ∈ Ys}}.

Note that for a fixed non-empty set Z, the function max{1 − hBi
(x, s) : i ∈ Z} is

non-increasing, and max{hAi
(x, s) : i ∈ Z} is non-decreasing.
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Suppose that mhD

Σ (x, s) = 1 and mhD

Σ (x, s+1) = −1. Choose the greatest s′ < s

such that either s′ = 0, or s′ > 0 and mhD

Σ (x, s′) = −1. Towards a contradiction,
assume that Xs+1 = Xs′ .

Then on one hand, we have

hD(x, s) = max{1− hBi
(x, s) : i ∈ Xs′} > max{hAi

(x, s) : i ∈ Ys′}.

Indeed, if hD(x, s) equals max{hAi
(x, s) : i ∈ Ys′}, then we would have

hD(x, s+ 1) = max{hAi
(x, s+ 1) : i ∈ Ys′} ≥ hD(x, s),

which contradicts the fact that mhD

Σ (x, s+ 1) = −1.
On the other hand, every t such that s′ < t ≤ s satisfies

hD(x, t) = max{hAi
(x, t) : i ∈ Ys′}.

We obtain a contradiction. Therefore, Xs+1 6= Xs′ .

We deduce that for each stage s with mhD

Σ (x, s) = 1 and mhD

Σ (x, s+1) = −1, at
least one new element is added to the growing set X =

⋃

t∈ω Xt.
Suppose that n = 2k + 2. Then one can show that |X | ≤ k + 1. We notice the

following: if |X | is less than k+1, then the number of monotonicity breaks (of the

function mhD

Σ (x, ·)) will be strictly less than the corresponding number for the case
|X | = k + 1. Hence, one can consider only the case when |X | = k + 1.

If |X | = k+1, then there is a stage s∗ such that for all s ≥ s∗, we have hD(x, s) =
max{1 − hBi

(x, s) : i ∈ X}, and this function can only decrease. A not difficult

combinatorial argument shows that |{s ∈ ω : mhD

Σ (x, s+1) 6= mhD

Σ (x, s)}| ≤ 2k+1.
If n = 2k + 1, then |X | ≤ k. An argument similar to the one above shows that

one can consider only the case when |X | equals k.
If |X | = k, then there is a stage s∗ such that for s ≥ s∗, we have hD(x, s) =

max{max{1 − hBi
(x, s) : i ∈ X}, hAk+1

(x, s)}. One can show that in this case,

|{s : mhD

Σ (x, s+ 1) 6= mhD

Σ (x, s)}| ≤ 2k. Theorem 3.1 is proved. � �

Corollary 3.1. Every finite Boolean combination of fuzzy c.e. sets is an n-c.e.
set, for some n ≥ 1.

3.3. The Introduced Hierarchy Is Not Enough. Here we show that the intro-
duced levels of the Fuzzy Ershov Hierarchy do not exhaust the class of all ∆0

2 fuzzy
subsets of ω.

Proposition 3.3. There exists a ∆0
2 fuzzy set A such that for any ∆0

2-approxima-

tion f(x, s) of A, the sequence (mf
Σ(0, s))s∈ω diverges when s tends to infinity. In

particular, A is not n-c.e., for all n ≥ 1.

Proof. Choose an arbitrary ∆0
2 real α, which is not left-c.e. and not right-c.e. (see,

e.g., Theorem 5.1.10 in [3] for an example of such real). The desired fuzzy set A
is defined as follows: put A(k) = α, for all k ∈ ω. Since α is ∆0

2, Proposition 2.2
implies that the set A is ∆0

2.
Towards a contradiction, assume that f(x, s) is a ∆0

2-approximation of A such

that the sequence (mf
Σ(0, s))s∈ω converges. There are two possible cases.

Case 1. Suppose that lims m
f
Σ(0, s) = 1. Then choose a stage s∗ such that

mf
Σ(0, s) = 1 for all s ≥ s∗. It is not hard to show that the set {q ∈ Q : q < α} is

equal to {q : (∃s ≥ s∗)[q < f(0, s)]}, and hence, this set is c.e. Then the real α is
left-c.e., which gives a contradiction.
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Case 2. Otherwise, lims m
f
Σ(0, s) = −1. Then a similar argument shows that

the real α is right-c.e. — again, a contradiction.
We deduce that our fuzzy set A has all desired properties. � �

4. Concluding Remarks: Broadening the Fuzzy Ershov Hierarchy

By way of conclusion, we briefly discuss two natural options for, first, refining the
Fuzzy Ershov Hierarchy, and, secondly, extending the finite levels of the hierarchy.
We leave many formal details to future work. In particular, even though we obtained
a number of results concerning the new hierarchies discussed below, due to space
constraints, we defer these results to an extended version of the present paper.

4.1. Counting Updates. We say that a ∆0
2-approximation of a fuzzy set A “has

an update” if f(x, s + 1) 6= f(x, s), for some x, s ∈ ω. Observe that our notion of
mind change, as in Definition 3.2, keeps track only of those updates which determine
a change of monotonicity in the approximating function: e.g., if f(x, s) is a ∆0

2-

approximation of a fuzzy set A, mf
Σ(x, s) = 1, and f(x, s + 1) > f(x, s), then

mf
Σ(x, s+1) remains equal to 1. So, one may explore what happens if one keeps track

of all updates for a given ∆0
2-approximation. To further motivate such approach,

consider the example by Harkleroad [8]:

Example 4.1. As usual, K denotes the Halting problem. Define

H(x) =

{

1, if x ∈ K,

1/2, otherwise.

It is easy to see that H is a fuzzy c.e. set. But note that, for any c.e. approx-
imation h of H (recall that one assumes h(x, 0) = 0 for all x), there must be an
infinite crisp set Z ⊆ ω such that h requires at least two updates to approximate
each x ∈ Z (as otherwise, K = {x : (∃s)(h(x, s) = 1)} would be computable).

So, to distinguish H from fuzzy c.e. sets which can be approximated with at
most one update, we propose the following new hierarchy:

Definition 4.1. A fuzzy set A is [n]1-c.e. if there is a computable function f : ω×
ω → [0, 1]Q such that for all x ∈ ω, we have:

• f(x, 0) = 0 and lims f(x, s) = A(x);
• (∀s)(f(x, s + 1) ≥ f(x, s));
• |{s : f(x, s+ 1) 6= f(x, s)}| ≤ n.

For simplicity, the definition above is limited to the first level of the Fuzzy
Ershov Hierarchy. But clearly, one could similarly stratify each class of fuzzy n-c.e.
sets as follows. Intuitively, a set A is fuzzy [n1, . . . , nm]m-c.e. if there is a ∆0

2-
approximation f to A that, for each x, can go up at most n1 times, and then down
at most n2 times, etc. — for m-many ups and downs.

In a future work, we plan to carefully study all such refinements of the Fuzzy
Ershov Hierarchy, together with their interplay.

4.2. Going Transfinite. In this paper, we talked only about the finite levels of
the Fuzzy Ershov Hierarchy. Similarly to the classical case, we could introduce
transfinite levels. These levels are labelled by the notations of constructive ordinals,
taken from Kleene’s O (see § 11.7 in [13]).
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Definition 4.2. Let a be an element of O. We say that a fuzzy ∆0
2 set A belongs to

the class Σ−1
a if there exist a ∆0

2-approximation f(x, s) and a computable “counting”
function h : ω2 → {b ∈ O : b <O a} such that for all x and s:

• lims f(x, s) = A(x) and f(x, 0) = 0;
• h(x, s+ 1) ≤O h(x, s); and

• if mf
Σ(x, s+ 1) 6= mf

Σ(x, s), then h(x, s+ 1) 6= h(x, s).

We note the following: if a is the notation of a finite ordinal n ≥ 1, then the Σ−1
a

sets are precisely the fuzzy n-c.e. sets.
In an extended version of this work, we will prove that, similarly to Proposi-

tion 3.3, the classes Σ−1
a , a ∈ O, still do not exhaust all fuzzy ∆0

2 sets. This
provides a major difference with the classical case: every crisp ∆0

2 set belongs to
Σ−1

a for some a ∈ O (Theorem 6 in [5], see also Theorem 4.3 in [16]).
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