Skip to main content

AQUA: Automated Quantized Inference for Probabilistic Programs

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12971))

Abstract

We present AQUA, a new probabilistic inference algorithm that operates on probabilistic programs with continuous posterior distributions. AQUA approximates programs via an efficient quantization of the continuous distributions. It represents the distributions of random variables using quantized value intervals (Interval Cube) and corresponding probability densities (Density Cube). AQUA’s analysis transforms Interval and Density Cubes to compute the posterior distribution with bounded error. We also present an adaptive algorithm for selecting the size and the granularity of the Interval and Density Cubes.

We evaluate AQUA on 24 programs from the literature. AQUA solved all of 24 benchmarks in less than 43 s (median 1.35 s) with a high-level of accuracy. We show that AQUA is more accurate than state-of-the-art approximate algorithms (Stan’s NUTS and ADVI) and supports programs that are out of reach of exact inference tools, such as PSI and SPPL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We support common continuous distributions including Normal, Uniform, Exponential, Beta, Gamma, Student-T, Laplace, Triangular, and any mixture of the above distributions.

References

  1. Aguirre, A., Barthe, G., Hsu, J., Kaminski, B.L., Katoen, J.P., Matheja, C.: A pre-expectation calculus for probabilistic sensitivity. POPL (2021)

    Google Scholar 

  2. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.: Fairsquare: probabilistic verification of program fairness. OOPSLA (2017)

    Google Scholar 

  3. Bissiri, P., Holmes, C., Walker, S.: A general framework for updating belief distributions. J. R. Stat. Soc. Ser. B Stat. Methodol. 78(5), 1103 (2016)

    Google Scholar 

  4. Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S., Visser, W.: Compositional solution space quantification for probabilistic software analysis. PLDI (2014)

    Google Scholar 

  5. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., et al.: Stan: a probabilistic programming language. JSTATSOFT 20(2) (2016)

    Google Scholar 

  6. Dutta, S., Legunsen, O., Huang, Z., Misailovic, S.: Testing probabilistic programming systems. In: FSE (2018)

    Google Scholar 

  7. Dutta, S., Zhang, W., Huang, Z., Misailovic, S.: Storm: program reduction for testing and debugging probabilistic programming systems. In: FSE (2019)

    Google Scholar 

  8. Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 62–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_4

    Chapter  Google Scholar 

  9. Gelman, A., Stern, H.S., Carlin, J.B., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall/CRC (2013)

    Google Scholar 

  10. Goodman, N., Tenenbaum, J.: Probabilistic Models of Cognition. http://probmods.org/

  11. Gorinova, M.I., Gordon, A.D., Sutton, C.: Probabilistic programming with densities in SlicStan: efficient, flexible, and deterministic. POPL (2019)

    Google Scholar 

  12. Holtzen, S., Van den Broeck, G., Millstein, T.: Scaling exact inference for discrete probabilistic programs. OOPSLA (2020)

    Google Scholar 

  13. Huang, Z., Wang, Z., Misailovic, S.: PSense: automatic sensitivity analysis for probabilistic programs. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 387–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_23

    Chapter  Google Scholar 

  14. Laurel, J., Misailovic, S.: Continualization of probabilistic programs with correction. ESOP (2020)

    Google Scholar 

  15. Luo, Y., Filieri, A., Zhou, Y.: SYMPAIS: symbolic parallel adaptive importance sampling for probabilistic program analysis. arXiv preprint arXiv:2010.05050 (2020)

  16. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic inference by program transformation in Hakaru (system description). In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 62–79. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29604-3_5

    Chapter  Google Scholar 

  17. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, Heidelberg (2012)

    Google Scholar 

  18. Nishihara, R., Minka, T., Tarlow, D.: Detecting parameter symmetries in probabilistic models. arXiv preprint arXiv:1312.5386 (2013)

  19. Saad, F.A., Rinard, M.C., Mansinghka, V.K.: SPPL: a probabilistic programming system with exact and scalable symbolic inference. PLDI (2021)

    Google Scholar 

  20. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: Inferring whole program properties from finitely many paths. PLDI (2013)

    Google Scholar 

  21. (2018). https://github.com/stan-dev/example-models

  22. Sweet, I., Trilla, J.M.C., Scherrer, C., Hicks, M., Magill, S.: What’s the over/under? probabilistic bounds on information leakage. POST (2018)

    Google Scholar 

  23. Wang, C., Blei, D.M.: A general method for robust Bayesian modeling. Bayesian Anal. 13(4), 1159–1187 (2018)

    Article  MathSciNet  Google Scholar 

  24. Wang, Y., Kucukelbir, A., Blei, D.M.: Robust probabilistic modeling with Bayesian data reweighting. ICML (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by NSF Grants No. CCF-1846354, CCF-1956374, CCF-2008883, and Facebook PhD Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zixin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Dutta, S., Misailovic, S. (2021). AQUA: Automated Quantized Inference for Probabilistic Programs. In: Hou, Z., Ganesh, V. (eds) Automated Technology for Verification and Analysis. ATVA 2021. Lecture Notes in Computer Science(), vol 12971. Springer, Cham. https://doi.org/10.1007/978-3-030-88885-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88885-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88884-8

  • Online ISBN: 978-3-030-88885-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics