Skip to main content

Leveraging Grad-CAM to Improve the Accuracy of Network Intrusion Detection Systems

  • Conference paper
  • First Online:
Discovery Science (DS 2021)

Abstract

As network cyber attacks continue to evolve, traditional intrusion detection systems are no longer able to detect new attacks with unexpected patterns. Deep learning is currently addressing this problem by enabling unprecedented breakthroughs to properly detect unexpected network cyber attacks. However, the lack of decomposability of deep neural networks into intuitive and understandable components makes deep learning decisions difficult to interpret. In this paper, we propose a method for leveraging the visual explanations of deep learning-based intrusion detection models by making them more transparent and accurate. In particular, we consider a CNN trained on a 2D representation of historical network traffic data to distinguish between attack and normal flows. Then, we use the Grad-CAM method to produce coarse localization maps that highlight the most important regions of the traffic data representation to predict the cyber attack. Since decisions made on samples belonging to the same class are expected to be explained with similar localization maps, we base the final classification of a new network flow on the class of the nearest-neighbour historical localization map. Experiments with various benchmark datasets demonstrate the effectiveness of the proposed method compared to several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/fpcaforio/grace/.

  2. 2.

    http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html.

  3. 3.

    https://www.unb.ca/cic/datasets/nsl.html.

  4. 4.

    https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets.

References

  1. Andresini, G., Appice, A., Caforio, F., Malerba, D.: Improving cyber-threat detection by moving the boundary around the normal samples. Stud. Comput. Intell. 919, 105–127 (2021)

    Google Scholar 

  2. Andresini, G., Appice, A., Di Mauro, N., Loglisci, C., Malerba, D.: Exploiting the auto-encoder residual error for intrusion detection. In: 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), pp. 281–290. IEEE (2019)

    Google Scholar 

  3. Andresini, G., Appice, A., Malerba, D.: Nearest cluster-based intrusion detection through convolutional neural networks. Knowl.-Based Syst. 216, 106798 (2021)

    Article  Google Scholar 

  4. Andresini, G., Appice, A., De Rose, L., Malerba, D.: Gan augmentation to deal with imbalance in imaging-based intrusion detection. Future Gener. Comput. Syst. 123, 108–127 (2021)

    Article  Google Scholar 

  5. Andresini, G., Appice, A., Malerba, D.: Autoencoder-based deep metric learning for network intrusion detection. Inf. Sci. 569, 706–727 (2021). https://doi.org/10.1016/j.ins.2021.05.016

    Article  MathSciNet  Google Scholar 

  6. Andresini, G., Appice, A., Mauro, N.D., Loglisci, C., Malerba, D.: Multi-channel deep feature learning for intrusion detection. IEEE Access 8, 53346–53359 (2020)

    Article  Google Scholar 

  7. Arrieta, A.B., et al.: Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  8. Burkart, N., Franz, M., Huber, M.F.: Explanation framework for intrusion detection. In: Beyerer J., Maier A., Niggemann O. (eds.) Machine Learning for Cyber Physical Systems, vol. 13, pp. 83–91. Springer, Berlin (2021). https://doi.org/10.1007/978-3-662-62746-4_9

  9. Dan, L., Dacheng, C., Baihong, J., Lei, S., Jonathan, G., See-Kiong, N.: Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In: Artificial Neural Networks and Machine Learning, pp. 703–716 (2019)

    Google Scholar 

  10. Das, A., Rad, P.: Opportunities and challenges in explainable artificial intelligence (XAI): A survey. arXiv preprint arXiv:2006.11371 (2020)

  11. Elsherif, A.: Automatic intrusion detection system using deep recurrent neural network paradigm. J. Inf. Secur. Cybercrimes Res. 1(1), 21–31 (2018)

    Google Scholar 

  12. He, Y.: Identification and processing of network abnormal events based on network intrusion detection algorithm. I. J. Netw. Secur. 21, 153–159 (2019)

    Google Scholar 

  13. Kim, T., Suh, S.C., Kim, H., Kim, J., Kim, J.: An encoding technique for cnn-based network anomaly detection. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 2960–2965. IEEE (2018)

    Google Scholar 

  14. Li, Z., Rios, A.L.G., Xu, G., Trajković, L.: Machine learning techniques for classifying network anomalies and intrusions. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2019)

    Google Scholar 

  15. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43 (2018)

    Article  Google Scholar 

  16. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Shallow neural network with kernel approximation for prediction problems in highly demanding data networks. Exp. Syst. Appl. 124, 196–208 (2019)

    Article  Google Scholar 

  17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)

    Google Scholar 

  18. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2020)

    Article  Google Scholar 

  19. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: CISDA, pp. 1–6 (2009)

    Google Scholar 

  20. Teyou, D., Kamdem, G., Ziazet, J.: Convolutional neural network for intrusion detection system in cyber physical systems. arXiv preprint arXiv:1905.03168 (2019)

  21. Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A., Venkatraman, S.: Deep learning approach for intelligent intrusion detection system. IEEE Access 7, 41525–41550 (2019)

    Article  Google Scholar 

  22. Wang, M., Zheng, K., Yang, Y., Wang, X.: An explainable machine learning framework for intrusion detection systems. IEEE Access 8, 73127–73141 (2020)

    Article  Google Scholar 

  23. Warnecke, A., Arp, D., Wressnegger, C., Rieck, K.: Evaluating explanation methods for deep learning in security. In: 2020 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 158–174. IEEE (2020)

    Google Scholar 

  24. Xie, N., Ras, G., van Gerven, M., Doran, D.: Explainable deep learning: A field guide for the uninitiated. arXiv preprint arXiv:2004.14545 (2020)

  25. Yan, J., Jin, D., Lee, C.W., Liu, P.: A comparative study of off-line deep learning based network intrusion detection. In: 10th International Conference on Ubiquitous and Future Networks, pp. 299–304 (2018)

    Google Scholar 

  26. Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5, 21954–21961 (2017)

    Article  Google Scholar 

  27. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient gan-based anomaly detection. CoRR abs/1802.06222, pp. 1–13 (2018)

    Google Scholar 

  28. Zenati, H., Romain, M., Foo, C.S., Lecouat, B., Chandrasekhar, V.R.: Adversarially learned anomaly detection. 2018 IEEE International Conference on Data Mining (ICDM), pp. 727–736 (2018)

    Google Scholar 

Download references

Acknowledgment

We acknowledge the support of MUR through the project “TALIsMan - Tecnologie di Assistenza personALizzata per il Miglioramento della quAlitá della vitA” (Grant ID: ARS01_01116), funding scheme PON RI 2014–2020 and the project “Modelli e tecniche di data science per la analisi di dati strutturati” funded by the University of Bari “Aldo Moro”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paolo Caforio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caforio, F.P., Andresini, G., Vessio, G., Appice, A., Malerba, D. (2021). Leveraging Grad-CAM to Improve the Accuracy of Network Intrusion Detection Systems. In: Soares, C., Torgo, L. (eds) Discovery Science. DS 2021. Lecture Notes in Computer Science(), vol 12986. Springer, Cham. https://doi.org/10.1007/978-3-030-88942-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88942-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88941-8

  • Online ISBN: 978-3-030-88942-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics