Skip to main content

Process Model Forecasting Using Time Series Analysis of Event Sequence Data

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2021)

Abstract

Process analytics is an umbrella of data-driven techniques which includes making predictions for individual process instances or overall process models. At the instance level, various novel techniques have been recently devised, tackling next activity, remaining time, and outcome prediction. At the model level, there is a notable void. It is the ambition of this paper to fill this gap. To this end, we develop a technique to forecast the entire process model from historical event data. A forecasted model is a will-be process model representing a probable future state of the overall process. Such a forecast helps to investigate the consequences of drift and emerging bottlenecks. Our technique builds on a representation of event data as multiple time series, each capturing the evolution of a behavioural aspect of the process model, such that corresponding forecasting techniques can be applied. Our implementation demonstrates the accuracy of our technique on real-world event log data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pm4py.fit.fraunhofer.de.

  2. 2.

    https://github.com/JohannesDeSmedt/pmf.

References

  1. Aalst, W.: Data science in action. In: Process Mining, pp. 3–23. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1

    Chapter  Google Scholar 

  2. van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of the directly-follows graph. Procedia Comput. Sci. 164, 321–328 (2019)

    Article  Google Scholar 

  3. van der Aalst, W.M.P., Rubin, V.A., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

    Article  Google Scholar 

  4. Bergmeir, C., Benítez, J.M.: On the use of cross-validation for time series predictor evaluation. Inf. Sci. 191, 192–213 (2012)

    Article  Google Scholar 

  5. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  6. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  7. Francq, C., Zakoian, J.M.: GARCH Models: Structure, Statistical Inference and Financial Applications. Wiley, Hoboken (2019)

    Book  Google Scholar 

  8. Hanke, J.E., Reitsch, A.G., Wichern, D.W.: Business Forecasting, vol. 9. Prentice Hall, Hoboken (2001)

    Google Scholar 

  9. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts, Melbourne (2018)

    Google Scholar 

  10. Kil, R.M., Park, S.H., Kim, S.: Optimum window size for time series prediction. In: 19th Annual International Conference on IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 1421–1424. IEEE (1997)

    Google Scholar 

  11. Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J.: Machine learning in business process monitoring: a comparison of deep learning and classical approaches used for outcome prediction. Bus. Inf. Syst. Eng. 63(3), 261–276 (2020). https://doi.org/10.1007/s12599-020-00645-0

    Article  Google Scholar 

  12. Kriglstein, S., Rinderle-Ma, S.: Change visualizations in business processes - requirements analysis. In: GRAPP/IVAPP, pp. 584–593. SciTePress (2012)

    Google Scholar 

  13. Leemans, S., Poppe, E., Wynn, M.: Directly follows-based process mining: a tool. In: Proceedings of the ICPM Demo Track 2019, pp. 9–12 (2019)

    Google Scholar 

  14. Leybourne, S.J., et al.: Testing for unit roots using forward and reverse dickey-fuller regressions. Oxford Bull. Econ. Stat. 57(4), 559–571 (1995)

    Article  Google Scholar 

  15. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng. 29(10), 2140–2154 (2017)

    Article  Google Scholar 

  16. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learning forecasting methods: concerns and ways forward. PLoS One 13(3), e0194889 (2018)

    Article  Google Scholar 

  17. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The m4 competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36(1), 54–74 (2020)

    Article  Google Scholar 

  18. Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev., 1–27 (2021). https://doi.org/10.1007/s10462-021-09960-8

  19. Nguyen, H., Dumas, M., ter Hofstede, A.H.M., La Rosa, M., Maggi, F.M.: Business process performance mining with staged process flows. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 167–185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_11

    Chapter  Google Scholar 

  20. Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting: towards proactive business process management. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 496–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_29

    Chapter  Google Scholar 

  21. Polyvyanyy, A., Moffat, A., García-Bañuelos, L.: An entropic relevance measure for stochastic conformance checking in process mining. In: ICPM, pp. 97–104 (2020)

    Google Scholar 

  22. Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Semi-automated time-granularity detection for data-driven simulation using process mining and system dynamics. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 77–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_6

    Chapter  Google Scholar 

  23. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_27

    Chapter  Google Scholar 

  24. Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with Python. In: 9th Python in Science Conference, vol. 57, p. 61 (2010)

    Google Scholar 

  25. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: VL, pp. 336–343. IEEE Computer Society (1996)

    Google Scholar 

  26. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  27. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data 13(2), 17:1-17:57 (2019)

    Article  Google Scholar 

  28. Thomakos, D.D., Guerard, J.B., Jr.: Naive, Arima, nonparametric, transfer function and VAR models: a comparison of forecasting performance. Int. J. Forecast. 20(1), 53–67 (2004)

    Article  Google Scholar 

  29. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. ACM TIST 10(4), 1–34 (2019)

    Article  Google Scholar 

  30. Weigend, A.S.: Time Series Prediction: Forecasting the Future and Understanding the Past. Routledge, Abingdon (2018)

    Book  Google Scholar 

  31. Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Comprehensive process drift detection with visual analytics. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 119–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_11

    Chapter  Google Scholar 

  32. Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Visual drift detection for sequence data analysis of business processes. IEEE Trans. Vis. Comput. Graph. (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes De Smedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Smedt, J., Yeshchenko, A., Polyvyanyy, A., De Weerdt, J., Mendling, J. (2021). Process Model Forecasting Using Time Series Analysis of Event Sequence Data. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds) Conceptual Modeling. ER 2021. Lecture Notes in Computer Science(), vol 13011. Springer, Cham. https://doi.org/10.1007/978-3-030-89022-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89022-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89021-6

  • Online ISBN: 978-3-030-89022-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics