Abstract
Process analytics is an umbrella of data-driven techniques which includes making predictions for individual process instances or overall process models. At the instance level, various novel techniques have been recently devised, tackling next activity, remaining time, and outcome prediction. At the model level, there is a notable void. It is the ambition of this paper to fill this gap. To this end, we develop a technique to forecast the entire process model from historical event data. A forecasted model is a will-be process model representing a probable future state of the overall process. Such a forecast helps to investigate the consequences of drift and emerging bottlenecks. Our technique builds on a representation of event data as multiple time series, each capturing the evolution of a behavioural aspect of the process model, such that corresponding forecasting techniques can be applied. Our implementation demonstrates the accuracy of our technique on real-world event log data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aalst, W.: Data science in action. In: Process Mining, pp. 3–23. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1
van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of the directly-follows graph. Procedia Comput. Sci. 164, 321–328 (2019)
van der Aalst, W.M.P., Rubin, V.A., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)
Bergmeir, C., Benítez, J.M.: On the use of cross-validation for time series predictor evaluation. Inf. Sci. 191, 192–213 (2012)
Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)
Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27
Francq, C., Zakoian, J.M.: GARCH Models: Structure, Statistical Inference and Financial Applications. Wiley, Hoboken (2019)
Hanke, J.E., Reitsch, A.G., Wichern, D.W.: Business Forecasting, vol. 9. Prentice Hall, Hoboken (2001)
Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts, Melbourne (2018)
Kil, R.M., Park, S.H., Kim, S.: Optimum window size for time series prediction. In: 19th Annual International Conference on IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 1421–1424. IEEE (1997)
Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J.: Machine learning in business process monitoring: a comparison of deep learning and classical approaches used for outcome prediction. Bus. Inf. Syst. Eng. 63(3), 261–276 (2020). https://doi.org/10.1007/s12599-020-00645-0
Kriglstein, S., Rinderle-Ma, S.: Change visualizations in business processes - requirements analysis. In: GRAPP/IVAPP, pp. 584–593. SciTePress (2012)
Leemans, S., Poppe, E., Wynn, M.: Directly follows-based process mining: a tool. In: Proceedings of the ICPM Demo Track 2019, pp. 9–12 (2019)
Leybourne, S.J., et al.: Testing for unit roots using forward and reverse dickey-fuller regressions. Oxford Bull. Econ. Stat. 57(4), 559–571 (1995)
Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng. 29(10), 2140–2154 (2017)
Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learning forecasting methods: concerns and ways forward. PLoS One 13(3), e0194889 (2018)
Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The m4 competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36(1), 54–74 (2020)
Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev., 1–27 (2021). https://doi.org/10.1007/s10462-021-09960-8
Nguyen, H., Dumas, M., ter Hofstede, A.H.M., La Rosa, M., Maggi, F.M.: Business process performance mining with staged process flows. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 167–185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_11
Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting: towards proactive business process management. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 496–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_29
Polyvyanyy, A., Moffat, A., García-Bañuelos, L.: An entropic relevance measure for stochastic conformance checking in process mining. In: ICPM, pp. 97–104 (2020)
Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Semi-automated time-granularity detection for data-driven simulation using process mining and system dynamics. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 77–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_6
Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_27
Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with Python. In: 9th Python in Science Conference, vol. 57, p. 61 (2010)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: VL, pp. 336–343. IEEE Computer Society (1996)
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data 13(2), 17:1-17:57 (2019)
Thomakos, D.D., Guerard, J.B., Jr.: Naive, Arima, nonparametric, transfer function and VAR models: a comparison of forecasting performance. Int. J. Forecast. 20(1), 53–67 (2004)
Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. ACM TIST 10(4), 1–34 (2019)
Weigend, A.S.: Time Series Prediction: Forecasting the Future and Understanding the Past. Routledge, Abingdon (2018)
Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Comprehensive process drift detection with visual analytics. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 119–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_11
Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Visual drift detection for sequence data analysis of business processes. IEEE Trans. Vis. Comput. Graph. (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
De Smedt, J., Yeshchenko, A., Polyvyanyy, A., De Weerdt, J., Mendling, J. (2021). Process Model Forecasting Using Time Series Analysis of Event Sequence Data. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds) Conceptual Modeling. ER 2021. Lecture Notes in Computer Science(), vol 13011. Springer, Cham. https://doi.org/10.1007/978-3-030-89022-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-89022-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89021-6
Online ISBN: 978-3-030-89022-3
eBook Packages: Computer ScienceComputer Science (R0)