Abstract
Garment generation or reconstruction is becoming extremely demanding for many digital applications, and the traditional process is time-consuming. In recent years, garment reconstruction from sketch leveraging deep learning and principal component analysis (PCA) has made great progress. In this paper, we present a data-driven approach wherein 3D garments are directly generated from sketches combining given body shape parameters. Our framework is an encoder-decoder architecture. In our network, sketch features extracted by DenseNet and body shape parameters were encoded to latent code respectively. Then, the new latent code obtained by adding two latent codes of the sketch and human body shape is decoded by a fully convolutional mesh decoder. Our network enables the body shape adapted detailed 3D garment generation by leveraging garment sketch and body shape parameters. With the fully convolutional mesh decoder, the network can show the effect of body shape and sketch on the generated garment. Experimental results show that the fully convolutional mesh decoder we used to reconstruct the garment performs higher accuracy and maintains lots of detail compared with the PCA-based method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Clo - 3d fashion design software (2021). https://www.clo3d.com/
torchvision.models - torchvision master documentation (2021). https://pytorch.org/vision/stable/models.html
Aouaidjia, K., Sheng, B., Li, P., Kim, J., Feng, D.D.: Efficient body motion quantification and similarity evaluation using 3-d joints skeleton coordinates. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 2774–2788 (2021). https://doi.org/10.1109/TSMC.2019.2916896
Bradley, D., Popa, T., Sheffer, A., Heidrich, W., Boubekeur, T.: Markerless garment capture. In: ACM SIGGRAPH 2008 Papers, pp. 1–9 (2008)
Chen, X., Zhou, B., Lu, F.X., Wang, L., Bi, L., Tan, P.: Garment modeling with a depth camera. ACM Trans. Graph. 34(6), 203–1 (2015)
Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)
Danundefinedřek, R., Dibra, E., Öztireli, C., Ziegler, R., Gross, M.: Deepgarment: 3d garment shape estimation from a single image. Comput. Graph. Forum 36(2), 269–280 (2017). https://doi.org/10.1111/cgf.13125
DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. In: ACM SIGGRAPH 2003 Papers, pp. 848–855 (2003)
Guan, P., Reiss, L., Hirshberg, D.A., Weiss, A., Black, M.J.: Drape: dressing any person. ACM Trans. Graph. (TOG) 31(4), 1–10 (2012)
Gundogdu, E., Constantin, V., Seifoddini, A., Dang, M., Salzmann, M., Fua, P.: Garnet: a two-stream network for fast and accurate 3d cloth draping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8739–8748 (2019)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. (TOG) 24(3), 1134–1141 (2005)
Jeong, M.H., Han, D.H., Ko, H.: Garment capture from a photograph. Comput. Animation Virtual Worlds 26, 291–300 (2015)
Jung, A., Hahmann, S., Rohmer, D., Begault, A., Boissieux, L., Cani, M.P.: Sketching folds: developable surfaces from non-planar silhouettes. ACM Trans. Graph. 34(5), November 2015. https://doi.org/10.1145/2749458
Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: Closing the loop between 3d and 2d human representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6050–6059 (2017)
Li, C., Pan, H., Liu, Y., Tong, X., Sheffer, A., Wang, W.: Bendsketch: Modeling freeform surfaces through 2d sketching. ACM Trans. Graph. 36(4), July 2017. https://doi.org/10.1145/3072959.3073632
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)
Neophytou, A., Hilton, A.: A layered model of human body and garment deformation. In: 2014 2nd International Conference on 3D Vision, vol. 1, pp. 171–178. IEEE (2014)
Patel, C., Liao, Z., Pons-Moll, G.: Tailornet: Predicting clothing in 3d as a function of human pose, shape and garment style. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7365–7375 (2020)
Pons-Moll, G., Pujades, S., Hu, S., Black, M.J.: Clothcap: seamless 4d clothing capture and retargeting. ACM Trans. Graph. (TOG) 36(4), 1–15 (2017)
Popa, T., et al.: Wrinkling captured garments using space-time data-driven deformation. In: Computer Graphics Forum, vol. 28, pp. 427–435. Wiley Online Library (2009)
Pritchard, D., Heidrich, W.: Cloth motion capture. In: Computer Graphics Forum, vol. 22, pp. 263–271. Wiley Online Library (2003)
Robson, C., Maharik, R., Sheffer, A., Carr, N.: Context-aware garment modeling from sketches. Comput. Graph. 35(3), 604–613 (2011)
Santesteban, I., Otaduy, M.A., Casas, D.: Learning-based animation of clothing for virtual try-on. In: Computer Graphics Forum, vol. 38, pp. 355–366. Wiley Online Library (2019)
Scholz, V., Stich, T., Magnor, M., Keckeisen, M., Wacker, M.: Garment motion capture using color-coded patterns. In: ACM SIGGRAPH 2005 Sketches, pp. 38-es (2005)
Tiwari, G., Bhatnagar, B.L., Tung, T., Pons-Moll, G.: Sizer: a dataset and model for parsing 3d clothing and learning size sensitive 3d clothing. arXiv preprint arXiv:2007.11610 (2020)
Wang, H., Hecht, F., Ramamoorthi, R., O’Brien, J.F.: Example-based wrinkle synthesis for clothing animation. In: ACM SIGGRAPH 2010 Papers, pp. 1–8 (2010)
Wang, T.Y., Ceylan, D., Popovic, J., Mitra, N.J.: Learning a shared shape space for multimodal garment design (2018)
White, R., Crane, K., Forsyth, D.A.: Capturing and animating occluded cloth. ACM Trans. Graph. (TOG) b(3), 34-es (2007)
Xu, H., Li, J., Lu, G., Zhang, D., Long, J.: Predicting ready-made garment dressing fit for individuals based on highly reliable examples. Comput. Graph. 90, 135–144 (2020). https://doi.org/10.1016/j.cag.2020.06.002. https://www.sciencedirect.com/science/article/pii/S0097849320300911
Zhou, B., Chen, X., Fu, Q., Guo, K., Tan, P.: Garment modeling from a single image. In: Computer Graphics Forum, vol. 32, pp. 85–91. Wiley Online Library (2013)
Zhou, Y., Wu, C., Li, Z., Cao, C., Ye, Y., Saragih, J., Li, H., Sheikh, Y.: Fully convolutional mesh autoencoder using efficient spatially varying kernels. arXiv preprint arXiv:2006.04325 (2020)
Acknowledgements
This paper is supported by Natural Science Foundation of Guangdong Province (No. 2021A1515011849, No. 2019A1515011793) and the Fundamental Research Funds for the Central Universities (No. 2020ZYGXZR042).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Y., Xian, C., Jin, S., Li, G. (2021). 3D Shape-Adapted Garment Generation with Sketches. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-89029-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89028-5
Online ISBN: 978-3-030-89029-2
eBook Packages: Computer ScienceComputer Science (R0)