Skip to main content

A Deep Learning Method for 2D Image Stippling

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13002))

Included in the following conference series:

  • 2129 Accesses

Abstract

Stippling is a fascinating art form, which is widely used in printing industry. In computer graphics, digital color stippling produces colored points with a certain distribution (e.g. blue noise distribution) from an input color image. However, it is challenging as each color channel should be evenly distributed with respect to each other channel. Deep learning approaches have shown great advantage on many image stylization applications and have not been utilized for stippling yet. The main reason is that stippling has strict constrains, which requires an even and random distribution of the points. In this paper, we propose the first deep learning approach for stippling, which is able to produce point distribution visually similar to stippling. We regard the stippling results as a 3D point cloud structure where the third channel represents for colors. Then we propose a deep network to transform images to points distribution, consisting of a feature extracting encoder to extract features from the input image and a point generating decoder to translate the features into stippling form. We exploit a spectrum loss to achieve the even distribution. As a result, our method can produce color stippling with reasonable cost. Experiments show that our method can produce stippling with a reasonable balance between the quality of the results and the computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: a variant of Lloyd’s method. ACM Trans. Graph. (TOG) 28(3), 1–8 (2009)

    Article  Google Scholar 

  2. Chen, Y., Lai, Y.K., Liu, Y.J.: CartoonGAN: generative adversarial networks for photo cartoonization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9465–9474 (2018)

    Google Scholar 

  3. Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. (TOG) 5(1), 51–72 (1986)

    Article  Google Scholar 

  4. De Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal transport. ACM Trans. Graph. (TOG) 31(6), 1–11 (2012)

    Article  Google Scholar 

  5. Deussen, O., Hiller, S., Van Overveld, C., Strothotte, T.: Floating points: a method for computing stipple drawings. Comput. Graph. Forum 19, 41–50 (2000)

    Article  Google Scholar 

  6. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  10. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M.: Neural style transfer: a review. IEEE Trans. Vis. Comput. Graph. 26(11), 3365–3385 (2019)

    Article  Google Scholar 

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Leimkühler, T., Singh, G., Myszkowski, K., Seidel, H.P., Ritschel, T.: Deep point correlation design. ACM Tran. Graph. (TOG) 38(6), 1–17 (2019)

    Article  Google Scholar 

  13. Li, C., Wand, M.: Combining Markov random fields and convolutional neural networks for image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2479–2486 (2016)

    Google Scholar 

  14. Li, X., Zhang, W., Shen, T., Mei, T.: Everyone is a cartoonist: selfie cartoonization with attentive adversarial networks. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 652–657. IEEE (2019)

    Google Scholar 

  15. Lim, I., Ibing, M., Kobbelt, L.: A convolutional decoder for point clouds using adaptive instance normalization. Comput. Graph. Forum 38, 99–108 (2019)

    Article  Google Scholar 

  16. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  17. Ma, L., Chen, Y., Qian, Y., Sun, H.: Incremental Voronoi sets for instant stippling. Vis. Comput. 34(6–8), 863–873 (2018)

    Article  Google Scholar 

  18. Ma, L., Deng, H., Wang, B., Chen, Y., Boubekeur, T.: Real-time structure aware color stippling. In: ACM SIGGRAPH 2019 Posters, pp. 1–2 (2019)

    Google Scholar 

  19. Martín, D., Arroyo, G., Rodríguez, A., Isenberg, T.: A survey of digital stippling. Comput. Graph. 67, 24–44 (2017)

    Article  Google Scholar 

  20. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  21. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural. Inf. Process. Syst. 30, 5099–5108 (2017)

    Google Scholar 

  22. Qin, H., Chen, Y., He, J., Chen, B.: Wasserstein blue noise sampling. ACM Trans. Graph. (TOG) 36(5), 1–13 (2017)

    Article  Google Scholar 

  23. Secord, A.: Weighted Voronoi stippling. In: Proceedings of the 2nd International Symposium on Non-photorealistic Animation and Rendering, pp. 37–43 (2002)

    Google Scholar 

  24. Vanderhaeghe, D., Barla, P., Thollot, J., Sillion, F.X.: Dynamic point distribution for stroke-based rendering. In: Eurogaphics Symposium on Rendering, pp. 139–146. Eurographics Association (2007)

    Google Scholar 

  25. Wei, L.: Multi-class blue noise sampling. ACM Trans. Graph. (TOG) 29(4), 1–8 (2010)

    Google Scholar 

  26. Xu, Y., Liu, L., Gotsman, C., Gortler, S.J.: Capacity-constrained delaunay triangulation for point distributions. Comput. Graph. 35(3), 510–516 (2011)

    Article  Google Scholar 

  27. Zhang, H., Dana, K.: Multi-style generative network for real-time transfer. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11132, pp. 349–365. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11018-5_32

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beibei Wang or Lei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, Z., Wang, B., Ma, L. (2021). A Deep Learning Method for 2D Image Stippling. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89029-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89028-5

  • Online ISBN: 978-3-030-89029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics