Abstract
Haptic object recognition is widely used in various robotic manipulation tasks. Using the shape features obtained at either a local or global scale, robotic systems can identify objects solely by touch. Most of the existing work on haptic systems either utilizes a robotic arm with end-effectors to identify the shape of an object based on contact points, or uses a surface capable of recording pressure patterns. In this work, we introduce a novel haptic capture system based on the local curvature of an object. We present a haptic sensor system comprising of three aligned and equally spaced fingers that move towards the surface of an object at the same speed. When an object is touched, our system records the relative times between each contact sensor. Simulating our approach in a virtual environment, we show that this new local and low-dimensional geometrical feature can be effectively used for shape recognition. Even with 10 samples, our system achieves an accuracy of over \(90\%\) without using any sampling strategy or any associated spatial information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, P.K., Roberts, K.S.: Haptic object recognition using a multi-fingered dextrous hand. Columbia University, Technical report (1988)
Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 . ACM, New York (2016) (2016)
Dong, S., Yuan, W., Adelson, E.H.: Improved gelsight tactile sensor for measuring geometry and slip. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 137–144. IEEE (2017)
Gazebo (2021). http://gazebosim.org/
Gielis, J.: A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Botany 90(3), 333–338 (2003)
Gomes, D.F., Paoletti, P., Luo, S.: Generation of gelsight tactile images for sim2real learning. arXiv preprint arXiv:2101.07169 (2021)
Gorges, N., Navarro, S.E., Wörn, H.: Haptic object recognition using statistical point cloud features. In: 2011 15th International Conference on Advanced Robotics (ICAR), pp. 15–20. IEEE (2011)
Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (2006)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015). https://doi.org/10.1038/nature14539
Lederman, S.J., Klatzky, R.L.: Haptic perception: a tutorial. Attent. Percept. Psychophys 71(7), 1439–1459 (2009)
Luo, S., Bimbo, J., Dahiya, R., Liu, H.: Robotic tactile perception of object properties: a review. Mechatronics 48, 54–67 (2017)
Luo, S., Mou, W., Althoefer, K., Liu, H.: Iterative closest labeled point for tactile object shape recognition. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3137–3142. IEEE (2016)
Navarro, S.E., Gorges, N., Wörn, H., Schill, J., Asfour, T., Dillmann, R.: Haptic object recognition for multi-fingered robot hands. In: 2012 IEEE Haptics Symposium (HAPTICS), pp. 497–502. IEEE (2012)
Polic, M., Krajacic, I., Lepora, N., Orsag, M.: Convolutional autoencoder for feature extraction in tactile sensing. IEEE Rob. Autom. Lett. 4(4), 3671–3678 (2019)
Pont, S.C., Kappers, A.M., Koenderink, J.J.: Similar mechanisms underlie curvature comparison by static and dynamic touch. Percept. Psychophys. 61(5), 874–894 (1999)
Rouhafzay, G., Cretu, A.M.: A virtual tactile sensor with adjustable precision and size for object recognition. In: 2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pp. 1–6. IEEE (2018)
Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard, W.: Object identification with tactile sensors using bag-of-features. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 243–248. IEEE (2009)
Scott, D.W.: Multivariate density estimation and visualization. In: Gentle, J., Hardle, W., Mori, Y. (eds.) Handbook of Computational Statistics, pp. 549–569. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-21551-3_19
Soh, H., Demiris, Y.: Incrementally learning objects by touch: online discriminative and generative models for tactile-based recognition. IEEE Trans. Haptics 7(4), 512–525 (2014)
Spiers, A.J., Liarokapis, M.V., Calli, B., Dollar, A.M.: Single-grasp object classification and feature extraction with simple robot hands and tactile sensors. IEEE Trans. Haptics 9(2), 207–220 (2016)
Wang, Y., Huang, W., Fang, B., Sun, F.: Elastic interaction of particles for robotic tactile simulation. arXiv preprint arXiv:2011.11528 (2020)
Yuan, W., Dong, S., Adelson, E.H.: Gelsight: high-resolution robot tactile sensors for estimating geometry and force. Sensors 17(12), 2762 (2017)
Zhang, M.M., Kennedy, M.D., Hsieh, M.A., Daniilidis, K.: A triangle histogram for object classification by tactile sensing. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4931–4938. IEEE (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Garrofé, G., Parés, C., Gutiérrez, A., Ruiz, C., Serra, G., Miralles, D. (2021). Virtual Haptic System for Shape Recognition Based on Local Curvatures. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-89029-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89028-5
Online ISBN: 978-3-030-89029-2
eBook Packages: Computer ScienceComputer Science (R0)