Skip to main content

An Improved Advancing-front-Delaunay Method for Triangular Mesh Generation

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13002))

Included in the following conference series:

Abstract

The triangular mesh is widely used in computer graphics. The advancing-front-Delaunay method is a mainstream method to generate the triangular mesh. However, it generates interior nodes on the basis of the segment front and needs to manage and update the generation segment front set carefully. This paper describes an improved advancing-front-Delaunay method that generates interior nodes based on the node front. The idea of node front can be implemented easily by our disk packing algorithm and does not need a complicated management strategy. Besides, unlike the traditional advancing-front-Delaunay method that generates interior node and the mesh at the same time, the method generates all the nodes firstly by the disk packing method, then generates the mesh. Hence, the method can be more efficient using these more efficient algorithms for a given fixed node-set to generate Delaunay triangular meshes or these more efficient algorithms with a carefully designed insertion sequence to insert the interior nodes. Four examples are given to show the effectiveness and robustness of the improved advancing-front-Delaunay method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theor. Appl. 47(1–3), 741–778 (2014)

    Article  MathSciNet  Google Scholar 

  2. Liu, F., Feng, R.: Automatic triangular grid generation on a free-form surface using a particle self-organizing system. Eng. Comput. 36(1), 377–389 (2019). https://doi.org/10.1007/s00366-019-00705-4

    Article  Google Scholar 

  3. Lohner, R., Parikh, P.: Generation of three-dimensional unstructured grids by the advancing-front method. Int. J. Numer. Meth. Fluids 8(10), 1135–1149 (1988)

    Article  Google Scholar 

  4. Dirichlet, P.G.L., Kronecker, L.G.: lejeune dirichlets werke: Ueber die reduction der positiven quadratischen formen mit drei unbestimmten ganzen zahlen. Journal Fr Die Rne Und Angewandte Mathematik 1850(40), 209–227 (1850)

    Google Scholar 

  5. Voronoi, G.: Nouvelles applications des paramtres continus la thorie des formes quadratiques. J. Reine Angew. Math. 133, 97–178 (1907)

    MATH  Google Scholar 

  6. Delaunay, B.: Sur la sphere vide. a la memoire de georges voronoi, Bulletin De Lacad & Eacutemie Des Sciences De Lurss. Classe Des Sciences Math & Eacutematiques Et Na 793–800 (1934)

    Google Scholar 

  7. Yu, F., Zeng, Y., Guan, Z., Lo, S.: A robust delaunay-aft based parallel method for the generation of large-scale fully constrained meshes. Comput. Struct. 228, 106–170 (2020)

    Article  Google Scholar 

  8. Borouchaki, H., Laug, P., George, P.-L.: Parametric surface meshing using a combined advancing front generalized delaunay approach. Int. J. Numer. Methods Eng. 49(1–2), 233–259 (2000)

    Article  MathSciNet  Google Scholar 

  9. Mavriplis, D.J.: An advancing front delaunay triangulation algorithm designed for robustness. J. Comput. Phys. 117(1), 90101 (1995)

    Article  MathSciNet  Google Scholar 

  10. Li, S.S., Shi, J.Z.: Algorithms for automatic generating interior nodal points and delaunay triangulation using advancing front technique. Commun. Numer. Methods Eng. 22(5), 467–474 (2006)

    Google Scholar 

  11. El-Hamalawi, A.: A 2d combined advancing front-delaunay mesh generation scheme. Finite Elem. Anal. Des. 40(9/10), 967–989 (2004)

    Article  Google Scholar 

  12. Dwyer, R.A.: A faster divide-and-conquer algorithm for constructing delaunay triangulations. Algorithmica 2(1–4), 137–151 (1987)

    Article  MathSciNet  Google Scholar 

  13. Zhou, S., Jones, C.B.: Hcpo: an efficient insertion order for incremental delaunay triangulation. Inf. Process. Lett. 93(1), 37–42 (2005)

    Article  MathSciNet  Google Scholar 

  14. Su, T., Wang, W., Lv, Z., Wu, W., Li, X.: Rapid delaunay triangulation for randomly distributed point cloud data using adaptive hilbert curve. Comput. Graph. 54, 65–74 (2015)

    Article  Google Scholar 

  15. Buchin, K.: Constructing delaunay triangulations along space filling curves. In: European Symposium on Algorithms (2009)

    Google Scholar 

  16. Lo, S.H.: Delaunay triangulation of non-uniform point distributions by means of multi-grid insertion. Finite Elements in Analysis & Design 63(4), 8–22 (2013)

    Article  MathSciNet  Google Scholar 

  17. Wang, W., Su, T., Wang, G.: Rapid 2d delaunay triangulation algorithm for random distributed point cloud data 27, 1653–1660 (2015)

    Google Scholar 

  18. Munson, T.: Mesh shape-quality optimization using the inverse mean-ratio metric. Math. Program. 110(3), 561–590 (2007)

    Article  MathSciNet  Google Scholar 

  19. SchoBerl, J.: Netgen an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Vis. Sci. 1, 41–52 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Y., Huang, X., Ma, Z., Hai, Y., Zhao, R., Sun, K. (2021). An Improved Advancing-front-Delaunay Method for Triangular Mesh Generation. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89029-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89028-5

  • Online ISBN: 978-3-030-89029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics