Skip to main content

Resilient Navigation Among Dynamic Agents with Hierarchical Reinforcement Learning

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13002))

Included in the following conference series:

Abstract

Behaving safe and efficient navigation policy without knowing surrounding agents’ intent is a hard problem. This problem is challenging for two reasons: the agent need to face high environment uncertainty for it can’t control other agents in the environment. Moreover, the navigation algorithm need to be resilient to various scenes. Recently reinforcement learning based navigation has attracted researchers interest. We present a hierarchical reinforcement learning based navigation algorithm. The two-level structure decouples the navigation task into target driven and collision avoidance, leading to a faster and more stable model to be trained. Compared with the reinforcement learning based navigation methods in recent years, we verified our model on navigation ability and the resilience on different scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacon, P., Harb, J., Precup, D.: The option-critic architecture. CoRR abs/1609.05140 (2016)

    Google Scholar 

  2. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, pp. 1928–1935. IEEE (2008)

    Google Scholar 

  3. Chen, C., Hu, S., Nikdel, P., Mori, G., Savva, M.: Relational graph learning for crowd navigation. arXiv preprint arXiv:1909.13165 (2019)

  4. Chen, C., Liu, Y., Kreiss, S., Alahi, A.: Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6015–6022. IEEE (2019)

    Google Scholar 

  5. Chen, Y.F., Liu, M., Everett, M., How, J.P.: Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 285–292. IEEE (2017)

    Google Scholar 

  6. Fahad, M., Chen, Z., Guo, Y.: Learning how pedestrians navigate: A deep inverse reinforcement learning approach. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 819–826. IEEE (2018)

    Google Scholar 

  7. Fan, T., Long, P., Liu, W., Pan, J., Yang, R., Manocha, D.: Learning resilient behaviors for navigation under uncertainty. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 5299–5305. IEEE (2020)

    Google Scholar 

  8. Godoy, J., Chen, T., Guy, S.J., Karamouzas, I., Gini, M.: ALAN: adaptive learning for multi-agent navigation. Autonomous Robots 42(8), 1543–1562 (2018)

    Article  Google Scholar 

  9. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)

    Article  Google Scholar 

  10. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  11. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  12. Liu, Y., Xu, A., Chen, Z.: Map-based deep imitation learning for obstacle avoidance. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8644–8649. IEEE (2018)

    Google Scholar 

  13. Long, P., Fan, T., Liao, X., Liu, W., Zhang, H., Pan, J.: Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6252–6259. IEEE (2018)

    Google Scholar 

  14. Long, P., Liu, W., Pan, J.: Deep-learned collision avoidance policy for distributed multiagent navigation. IEEE Robot. Autom. Lett. 2(2), 656–663 (2017)

    Article  Google Scholar 

  15. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  16. Peng, X.B., Abbeel, P., Levine, S., van de Panne, M.: DeepMimic: example-guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)

    Article  Google Scholar 

  17. Pfeiffer, M., et al.: Reinforced imitation: sample efficient deep reinforcement learning for mapless navigation by leveraging prior demonstrations. IEEE Robot. Autom. Lett. 3(4), 4423–4430 (2018)

    Article  MathSciNet  Google Scholar 

  18. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987)

    Google Scholar 

  19. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  20. Tai, L., Zhang, J., Liu, M., Burgard, W.: Socially compliant navigation through raw depth inputs with generative adversarial imitation learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1111–1117. IEEE (2018)

    Google Scholar 

  21. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Robotics Research, pp. 3–19. Springer (2011). https://doi.org/10.1007/978-3-642-19457-3_1

  22. Vezhnevets, A.S., et al.: Feudal networks for hierarchical reinforcement learning. In: International Conference on Machine Learning, pp. 3540–3549. PMLR (2017)

    Google Scholar 

  23. Zhang, C., Lesser, V.: Coordinating multi-agent reinforcement learning with limited communication. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1101–1108 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Research and Development Program of China (No. 2018AAA0103002 and 2017YFB1002600) and National Natural Science Foundation of China (No. 61702482 and 62002345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Jiang, H., Wang, Z. (2021). Resilient Navigation Among Dynamic Agents with Hierarchical Reinforcement Learning. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89029-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89028-5

  • Online ISBN: 978-3-030-89029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics