Abstract
Depth maps obtained by consumer depth sensors are often accompanied by two challenging problems: low spatial resolution and insufficient quality, which greatly limit the potential applications of depth images. To overcome these shortcomings, some depth map super-resolution (DSR) methods tend to extrapolate a high-resolution depth map from a low-resolution depth map with the additional guidance of the corresponding high-resolution intensity image. However, these methods are still prone to texture copying and boundary discontinuities due to improper guidance. In this paper, we propose a deep residual gate fusion network (DRGFN) for guided depth map super-resolution with progressive multi-scale reconstruction. To alleviate the misalignment between color images and depth maps, DRGFN applies a color-guided gate fusion module to acquire content-adaptive attention for better fusing the color and depth features. To focus on restoring details such as boundaries, DRGFN applies a residual attention module to highlight the different importance of different channels. Furthermore, DRGFN applies a multi-scale fusion reconstruction module to make use of multi-scale information for better image reconstruction. Quantitative and qualitative experiments on several benchmarks fully show that DRGFN obtains the state-of-the-art performance for depth map super-resolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yang, Q., Yang, R., Davis, J., Nistér, D.: Spatial-depth super resolution for range images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Liu, M.-Y., Tuzel, O., Taguchi, Y.: Joint geodesic upsampling of depth images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 169–176 (2013)
Ferstl, D., Reinbacher, C., Ranftl, R., Rüther, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. In: IEEE International Conference on Computer Vision, pp. 993–1000 (2013)
Jiang, Z., Hou, Y., Yue, H., Yang, J., Hou, C.: Depth super-resolution from rgb-d pairs with transform and spatial domain regularization. IEEE Trans. Image Process. 27(5), 2587–2602 (2018)
Song, X., Dai, Y., Qin, X.: Deep depth super-resolution: learning depth super-resolution using deep convolutional neural network. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 360–376. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54190-7_22
Hui, T.-W., Loy, C.C., Tang, X.: Depth map super-resolution by deep multi-scale guidance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 353–369. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_22
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)
Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7982–7991 (2019)
Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5791–5800 (2020)
Hu, Y., Li, J., Huang, Y., Gao, X.: Channel-wise and spatial feature modulation network for single image super-resolution. IEEE Trans. Circ. Syst. Video Technol. 30, 3911–3927 (2019)
Dai, T., Cai, J., Zhang, Y., Xia, S.-T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11 065–11 074 (2019)
Shi, W., Jiang, F., Zhao, D.: Single image super-resolution with dilated convolution based multi-scale information learning inception module. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 977–981. IEEE (2017)
Gu, S., Zuo, W., Guo, S., Chen, Y., Chen, C., Zhang, L.: Learning dynamic guidance for depth image enhancement. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pp. 712–721 (2017)
Ye, X., Duan, X., Li, H.: Depth super-resolution with deep edge-inference network and edge-guided depth filling. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1398–1402. IEEE (2018)
Wen, Y., Sheng, B., Li, P., Lin, W., Feng, D.D.: Deep color guided coarse-to-fine convolutional network cascade for depth image super-resolution. IEEE Trans. Image Process. 28(2), 994–1006 (2019)
Lutio, R.D., D’aronco, S., Wegner, J.D., Schindler, K.: Guided super-resolution as pixel-to-pixel transformation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8829–8837 (2019)
Ye, X., Sun, B., Wang, Z., Yang, J., Xu, R., Li, H., Li, B.: PMBANet: progressive multi-branch aggregation network for scene depth super-resolution. IEEE Trans. Image Process. 29, 7427–7442 (2020)
Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)
Zhang, X., Dong, H., Hu, Z., Lai, W.-S., Wang, F., Yang, M.-H.: Gated fusion network for joint image deblurring and super-resolution. In: BMVC (2018)
Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 349–356. IEEE (2009)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)
Guo, J., Ma, S., Guo, S.: MAANet: multi-view aware attention networks for image super-resolution. CoRR, vol. abs/1904.06252 (2019)
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. CoRR, vol. abs/1807.02758 (2018)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 195–202 (2003)
Lu, J., Shi, K., Min, D., Lin, L., Do, M.N.: Cross-based local multipoint filtering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 430–437 (2012)
Xie, J., Chou, C.-C., Feris, R., Sun, M.-T.: Single depth image super resolution and denoising via coupled dictionary learning with local constraints and shock filtering. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2014)
Xie, J., Feris, R.S., Yu, S.-S., Sun, M.-T.: Joint super resolution and denoising from a single depth image. IEEE Trans. Multimedia 17(9), 1525–1537 (2015)
Xie, J., Feris, R.S., Sun, M.-T.: Edge-guided single depth image super resolution. IEEE Trans. Image Process. 25(1), 428–438 (2016)
Mac Aodha, O., Campbell, N.D.F., Nair, A., Brostow, G.J.: Patch based synthesis for single depth image super-resolution. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 71–84. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_6
Huang, J.-B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)
Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: IEEE International Conference on Computer Vision, pp. 370–378 (2015)
Riegler, G., Rüther, M., Bischof, H.: ATGV-Net: accurate depth super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 268–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_17
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: International Conference on Curves and Surfaces, pp. 711–730 (2012)
Acknowledgement
This work was supported in part by the National Natural Science Foundation of China under Grants 62077037 and 61872241, in part by Shanghai Municipal Science and Technology Major Project under Grant 2021SHZDZX0102, in part by the Science and Technology Commission of Shanghai Municipality under Grants 18410750700 and 17411952600, in part by Shanghai Lin-Gang Area Smart Manufacturing Special Project under Grant ZN2018020202-3, and in part by Project of Shanghai Municipal Health Commission(2018ZHYL0230).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wen, Y. et al. (2021). Progressive Multi-scale Reconstruction for Guided Depth Map Super-Resolution via Deep Residual Gate Fusion Network. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-89029-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89028-5
Online ISBN: 978-3-030-89029-2
eBook Packages: Computer ScienceComputer Science (R0)