Abstract
Due to the rapid development of deep learning technology in recent years, many scholars have applied deep learning technology to the field of remote sensing imagery. But few have directly applied LiDAR point clouds to 3D neural networks for tree detection. And the existing methods usually have better detection results in a specific single scene, but in some complex scenes, such as containing diverse types of trees, urban forests and high forest density, the detection results are not satisfactory. Therefore, this paper presents a PointCNN-based method of 3D tree detection using LiDAR point clouds, which aims to improve the detection accuracy of trees in complex scenes and versatility. This method first builds a canopy height model (CHM) using raw LiDAR point clouds and obtains rough seed points on CHM. Then it extracts the detection samples consisting of single tree's point cloud data based on the rough seed points. Next, the 3D-CNN classifier based on PointCNN is adopted to classify detection samples, and the classification results are used for filtering seed points. Finally, our method performs the tree stagger analysis on those close seed points. This study selected twelve experimental plots from study areas in Bend, Central Oregon, USA. Based on the results of our experiments, the highest matching score and average score reached 91.0 and 88.3. Experimental results show that our method can effectively extract tree information in complex scenes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Maltamo, M., Næsset, E., Vauhkonen, J. (eds.): Forestry Applications of Airborne Laser Scanning. Concepts and Case Studies. Managing Forest Ecosystem, vol. 27, p. 460, Springer, Netherlands (2014). https://doi.org/10.1007/978-94-017-8663-8
Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S., Zhu, Y.-H.: Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecol. Manag. 128, 109–120 (2000)
Wulder, M.A., et al.: Lidar sampling for large-area forest characterization: a review. Remote Sens. Environ. 121, 196–209 (2012)
Unger, D.R., Hung, I.K., Brooks, R., Williams, H.: Estimating number of trees, tree height and crown width using LiDAR data. GISci. Remote Sens. 51, 227–238 (2014)
Kwak, D.-A., et al.: Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. J. Plant Res. 123, 421–432 (2010)
Zhou, T., Popescu, C.S., Lawing, M.A., Eriksson, M., Strimbu, M.B., Bürkner, C.P.: Bayesian and classical machine learning methods: a comparison for tree species classification with LiDAR waveform signatures. Remote Sens.-Basel 10, 39 (2017)
GarcÃa, M., Riaño, D., Chuvieco, E., Danson, F.M.: Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens. Environ. 114, 816–830 (2010)
Zhen, Z., Quackenbush, J.L., Zhang, L.: Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data. Remote Sens.-Basel 8, 333 (2016)
Wulder, M., Niemann, K.O., Goodenough, D.G.: Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sens. Environ. 73, 103–114 (2000)
Monnet, J.-M., Mermin, E., Chanussot, J., Berger, F.: Tree top detection using local maxima filtering: a parameter sensitivity analysis. In: 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems (Silvilaser 2010), p. 9 (2010)
Hirschmugl, M., Ofner, M., Raggam, J., Schardt, M.: Single tree detection in very high resolution remote sensing data. Remote Sens. Environ. 110, 533–544 (2007)
Bottai, L., Arcidiaco, L., Chiesi, M., Maselli, F.: Application of a single-tree identification algorithm to LiDAR data for the simulation of stem volume current annual increment. J. Appl. Remote Sens. 7, 073699 (2013)
Zhen, Z., Quackenbush, L.J., Stehman, S.V., Zhang, L.: Agent-based region growing for individual tree crown delineation from airborne laser scanning (ALS) data. Int. J. Remote. Sens. 36, 1965–1993 (2015)
Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T., Hussin, Y.A.: Generating Pit-free canopy height models from airborne LiDAR. Photogramm Eng. Rem. S. 80, 863–872 (2014)
Xu, W., Deng, S., Liang, D., Cheng, X.: A crown morphology-based approach to individual tree detection in subtropical mixed broadleaf urban forests using UAV LiDAR data. Remote Sens. 13, 1278 (2021)
Morsdorf, F., Meier, E., Kötz, B., Itten, K.I., Dobbertin, M., Allgöwer, B.: LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens. Environ. 92, 353–362 (2004)
Kandare, K., Dalponte, M., Gianelle, D., Chan, J.C.: A new procedure for identifying single trees in understory layer using discrete LiDAR data. In: 2014 IEEE Geoscience and Remote Sensing Symposium. IEEE, pp. 1357–1360 (2014)
Dai, W., Yang, B., Dong, Z., Shaker, A.: A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS J. Photogramm. 144, 400–411 (2018)
Jaskierniak, D., et al.: Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests. ISPRS J. Photogramm. Remote Sens. 171, 171–187 (2021)
Reitberger, J., Schnörr, C., Krzystek, P., Stilla, U.: 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J. Photogramm. 64, 561–574 (2009)
Heinzel, J.N., Weinacker, H., Koch, B.: Prior-knowledge-based single-tree extraction. Int. J. Remote Sens. 32, 4999–5020 (2011)
Duncanson, L.I., Cook, B.D., Hurtt, G.C., Dubayah, R.O.: An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems. Remote Sens. Environ. 154, 378–386 (2014)
Khosravipour, A., Skidmore, A.K., Isenburg, M.: Generating spike-free digital surface models using LiDAR raw point clouds: a new approach for forestry applications. Int. J. Appl. Earth Obs. 52, 104–114 (2016)
LAStools. https://rapidlasso.com/lastools/
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. Adv. Neural Inf. Process. Syst. 820–830 (2018)
Kingma, D.P., Adam, J.B.: A method for stochastic optimization. ICLR (2014)
Cook, D.B., et al.: NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sens.-Basel 5, 4045–4066 (2013)
Eysn, L., et al.: A benchmark of LiDAR-based single tree detection methods using heterogeneous forest data from the alpine space. Forests 6, 1721–1747 (2015)
Chen, Q., Baldocchi, D., Gong, P., Kelly, M.: Isolating individual trees in a savanna woodland using small footprint Lidar data. Photogramm. Eng. Rem. S. 72, 923–932 (2006)
Dalponte, M., Coomes, D.A.: Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol. Evol. 7, 1236–1245 (2016)
Liu, L., Lim, S., Shen, X., Yebra, M.: A multiscale morphological algorithm for improvements to canopy height models. Comput. Geosci.-UK 130, 20–31 (2019)
Dalponte, M., Reyes, F., Kandare, K., Gianelle, D.: Delineation of individual tree crowns from ALS and hyperspectral data: a comparison among four methods. Eur. J. Remote Sens. 48, 365–382 (2015)
Acknowledgement
This research was supported by the National Natural Science Foundation of China under Grant No. 62072405 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LGF20F020017.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ying, W., Dong, T., Ding, Z., Zhang, X. (2021). PointCNN-Based Individual Tree Detection Using LiDAR Point Clouds. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-89029-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89028-5
Online ISBN: 978-3-030-89029-2
eBook Packages: Computer ScienceComputer Science (R0)