Skip to main content

PointCNN-Based Individual Tree Detection Using LiDAR Point Clouds

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13002))

Included in the following conference series:

  • 2575 Accesses

Abstract

Due to the rapid development of deep learning technology in recent years, many scholars have applied deep learning technology to the field of remote sensing imagery. But few have directly applied LiDAR point clouds to 3D neural networks for tree detection. And the existing methods usually have better detection results in a specific single scene, but in some complex scenes, such as containing diverse types of trees, urban forests and high forest density, the detection results are not satisfactory. Therefore, this paper presents a PointCNN-based method of 3D tree detection using LiDAR point clouds, which aims to improve the detection accuracy of trees in complex scenes and versatility. This method first builds a canopy height model (CHM) using raw LiDAR point clouds and obtains rough seed points on CHM. Then it extracts the detection samples consisting of single tree's point cloud data based on the rough seed points. Next, the 3D-CNN classifier based on PointCNN is adopted to classify detection samples, and the classification results are used for filtering seed points. Finally, our method performs the tree stagger analysis on those close seed points. This study selected twelve experimental plots from study areas in Bend, Central Oregon, USA. Based on the results of our experiments, the highest matching score and average score reached 91.0 and 88.3. Experimental results show that our method can effectively extract tree information in complex scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maltamo, M., Næsset, E., Vauhkonen, J. (eds.): Forestry Applications of Airborne Laser Scanning. Concepts and Case Studies. Managing Forest Ecosystem, vol. 27, p. 460, Springer, Netherlands (2014). https://doi.org/10.1007/978-94-017-8663-8

  2. Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S., Zhu, Y.-H.: Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecol. Manag. 128, 109–120 (2000)

    Article  Google Scholar 

  3. Wulder, M.A., et al.: Lidar sampling for large-area forest characterization: a review. Remote Sens. Environ. 121, 196–209 (2012)

    Article  Google Scholar 

  4. Unger, D.R., Hung, I.K., Brooks, R., Williams, H.: Estimating number of trees, tree height and crown width using LiDAR data. GISci. Remote Sens. 51, 227–238 (2014)

    Article  Google Scholar 

  5. Kwak, D.-A., et al.: Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. J. Plant Res. 123, 421–432 (2010)

    Article  Google Scholar 

  6. Zhou, T., Popescu, C.S., Lawing, M.A., Eriksson, M., Strimbu, M.B., Bürkner, C.P.: Bayesian and classical machine learning methods: a comparison for tree species classification with LiDAR waveform signatures. Remote Sens.-Basel 10, 39 (2017)

    Article  Google Scholar 

  7. García, M., Riaño, D., Chuvieco, E., Danson, F.M.: Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens. Environ. 114, 816–830 (2010)

    Article  Google Scholar 

  8. Zhen, Z., Quackenbush, J.L., Zhang, L.: Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data. Remote Sens.-Basel 8, 333 (2016)

    Article  Google Scholar 

  9. Wulder, M., Niemann, K.O., Goodenough, D.G.: Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sens. Environ. 73, 103–114 (2000)

    Article  Google Scholar 

  10. Monnet, J.-M., Mermin, E., Chanussot, J., Berger, F.: Tree top detection using local maxima filtering: a parameter sensitivity analysis. In: 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems (Silvilaser 2010), p. 9 (2010)

    Google Scholar 

  11. Hirschmugl, M., Ofner, M., Raggam, J., Schardt, M.: Single tree detection in very high resolution remote sensing data. Remote Sens. Environ. 110, 533–544 (2007)

    Article  Google Scholar 

  12. Bottai, L., Arcidiaco, L., Chiesi, M., Maselli, F.: Application of a single-tree identification algorithm to LiDAR data for the simulation of stem volume current annual increment. J. Appl. Remote Sens. 7, 073699 (2013)

    Google Scholar 

  13. Zhen, Z., Quackenbush, L.J., Stehman, S.V., Zhang, L.: Agent-based region growing for individual tree crown delineation from airborne laser scanning (ALS) data. Int. J. Remote. Sens. 36, 1965–1993 (2015)

    Article  Google Scholar 

  14. Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T., Hussin, Y.A.: Generating Pit-free canopy height models from airborne LiDAR. Photogramm Eng. Rem. S. 80, 863–872 (2014)

    Article  Google Scholar 

  15. Xu, W., Deng, S., Liang, D., Cheng, X.: A crown morphology-based approach to individual tree detection in subtropical mixed broadleaf urban forests using UAV LiDAR data. Remote Sens. 13, 1278 (2021)

    Article  Google Scholar 

  16. Morsdorf, F., Meier, E., Kötz, B., Itten, K.I., Dobbertin, M., Allgöwer, B.: LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens. Environ. 92, 353–362 (2004)

    Article  Google Scholar 

  17. Kandare, K., Dalponte, M., Gianelle, D., Chan, J.C.: A new procedure for identifying single trees in understory layer using discrete LiDAR data. In: 2014 IEEE Geoscience and Remote Sensing Symposium. IEEE, pp. 1357–1360 (2014)

    Google Scholar 

  18. Dai, W., Yang, B., Dong, Z., Shaker, A.: A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS J. Photogramm. 144, 400–411 (2018)

    Article  Google Scholar 

  19. Jaskierniak, D., et al.: Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests. ISPRS J. Photogramm. Remote Sens. 171, 171–187 (2021)

    Article  Google Scholar 

  20. Reitberger, J., Schnörr, C., Krzystek, P., Stilla, U.: 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J. Photogramm. 64, 561–574 (2009)

    Article  Google Scholar 

  21. Heinzel, J.N., Weinacker, H., Koch, B.: Prior-knowledge-based single-tree extraction. Int. J. Remote Sens. 32, 4999–5020 (2011)

    Article  Google Scholar 

  22. Duncanson, L.I., Cook, B.D., Hurtt, G.C., Dubayah, R.O.: An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems. Remote Sens. Environ. 154, 378–386 (2014)

    Article  Google Scholar 

  23. Khosravipour, A., Skidmore, A.K., Isenburg, M.: Generating spike-free digital surface models using LiDAR raw point clouds: a new approach for forestry applications. Int. J. Appl. Earth Obs. 52, 104–114 (2016)

    Article  Google Scholar 

  24. LAStools. https://rapidlasso.com/lastools/

  25. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. Adv. Neural Inf. Process. Syst. 820–830 (2018)

    Google Scholar 

  26. Kingma, D.P., Adam, J.B.: A method for stochastic optimization. ICLR (2014)

    Google Scholar 

  27. Cook, D.B., et al.: NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sens.-Basel 5, 4045–4066 (2013)

    Article  Google Scholar 

  28. Eysn, L., et al.: A benchmark of LiDAR-based single tree detection methods using heterogeneous forest data from the alpine space. Forests 6, 1721–1747 (2015)

    Article  Google Scholar 

  29. Chen, Q., Baldocchi, D., Gong, P., Kelly, M.: Isolating individual trees in a savanna woodland using small footprint Lidar data. Photogramm. Eng. Rem. S. 72, 923–932 (2006)

    Article  Google Scholar 

  30. Dalponte, M., Coomes, D.A.: Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol. Evol. 7, 1236–1245 (2016)

    Article  Google Scholar 

  31. Liu, L., Lim, S., Shen, X., Yebra, M.: A multiscale morphological algorithm for improvements to canopy height models. Comput. Geosci.-UK 130, 20–31 (2019)

    Article  Google Scholar 

  32. Dalponte, M., Reyes, F., Kandare, K., Gianelle, D.: Delineation of individual tree crowns from ALS and hyperspectral data: a comparison among four methods. Eur. J. Remote Sens. 48, 365–382 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China under Grant No. 62072405 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LGF20F020017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyang Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ying, W., Dong, T., Ding, Z., Zhang, X. (2021). PointCNN-Based Individual Tree Detection Using LiDAR Point Clouds. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89029-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89028-5

  • Online ISBN: 978-3-030-89029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics