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Abstract. The Go programming language is an increasingly popular
language but some of its features lack a formal investigation. This arti-
cle explains Go’s resolution mechanism for overloaded methods and its
support for structural subtyping by means of translation from Feather-
weight Go to a simple target language. The translation employs a form
of dictionary passing known from type classes in Haskell and preserves
the dynamic behavior of Featherweight Go programs.

1 Introduction

The Go programming language [22], introduced by Google in 2009, is syntac-
tically close to C and incorporates features that are well-established in other
programming languages. For example, a garbage collector as found in Java [6],
built-in support for concurrency and channels in the style of Concurrent ML [17],
higher-order and anonymous functions known from functional languages such as
Haskell [12]. Go also supports method overloading for structures where related
methods can be grouped together using interfaces. Unlike Java, where subtyping
is nominal, Go supports structural subtyping among interfaces.

Earlier work by Griesmer and co-authors [7] introduces Featherweight Go
(FG), a minimal core calculus that includes the essential features of Go. Their
work specifies static typing rules and a run-time method lookup semantics for
FG. However, the actual Go implementation appears to employ a different dy-
namic semantics. Quoting Griesmer and co-workers:

Go is designed to enable efficient implementation. Structures are laid out

in memory as a sequence of fields, while an interface is a pair of a pointer

to an underlying structure and a pointer to a dictionary of methods.

To our knowledge, nobody has so far formalized such a dictionary-passing trans-
lation for FG and established its semantic equivalence with the FG run-time
method lookup dynamic semantics. Hence, we make the following contributions:

– Section 5 specifies the translation of source FG programs to an untyped
lambda calculus with pattern matching. We employ a dictionary-passing
translation scheme à la type classes [8] to statically resolve overloaded FG
method calls. The translation is guided by the typing of the FG program.
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– Section 6 establishes the semantic correctness of the dictionary-passing trans-
lation. The proof for this result is far from trivial. We require step-indexed
logical relations [1] as there can be cyclic dependencies between interfaces
and method declarations.

Section 3 specifies Featherweight Go (FG) and Section 4 specifies our target
language. Section 7 covers related works and concludes. The upcoming section
gives an overview.

2 Overview

We introduce Featherweight Go [7] (FG) by an example and then present the
ideas of our dictionary-passing translation for FG.

2.1 FG by Example

FG is a syntactic subset of the full Go language, supporting structures, methods
and interfaces. The upper part in Figure 1, lines 1-22, shows an example slightly
adopted from [7]. The original example covers equality in FG. We extend the
example and include an ordering relation (less or equal than) as well.

FG programs consist of a sequence of declarations defining structures, meth-
ods, interfaces and a main function. Method bodies in FG only consist of a return
statement. For clarity, we sometimes identify subexpressions via variable bind-
ings introduced with var. In such a declaration, the name of a variable precedes
its type, the notation var _ (line 21) indicates that we do not care about the
variable name given to the main expression. The example uses primitive types
int and bool and several operations on values of these types (==, &&, . . . ). These
are not part of FG.

Structures in FG are similar to structures known from C/C++. A syntactic
difference is the FG convention that field names precede the types. In FG, struc-
tures and methods are always declared separately, whereas C++ groups methods
together in a class declaration. Methods in FG can be overloaded on the receiver.
The receiver is the value on which the method operates on.

Interfaces in FG consist of a set of method declarations that share the same
receiver. For example, interface Eq introduces method eq and interface Ord in-
troduces methods eq and lt (line 3 and 4). The (leading) receiver argument is
left implicit and method names in interfaces must always be distinct. Interfaces
are types and can be used in type declarations for structures and methods. For
example, structure Pair defines two fields left and right, each of type Eq. Dec-
larations of structures must be non-recursive whereas an interface may appear
in the method declaration of the interface itself. For example, see interface Eq.

FG uses the keyword func to introduce methods and functions. Methods
can be distinguished from ordinary functions as the receiver argument always
precedes the method name. In FG, the only function is the main function, all
other declarations introduced by func are methods.
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1 type Int struct { val int }
2 type Pair struct { left Eq; right Eq }
3 type Eq interface { eq(that Eq) bool }
4 type Ord interface { eq(that Eq) bool; lt(that Ord) bool }
5

6 func (this Int) eq(that Eq) bool {
7 return this.val == (that .( Int)).val
8 }
9 func (this Pair) eq(that Eq) bool {

10 return this.left.eq(that .( Pair ). left) &&
11 this.right .eq(that .( Pair ). right )
12 }
13 func (this Int) lt(that Ord) bool {
14 return this.eq(that) ||
15 (this.val < (that .( Int)).val)
16 }
17 func main () {
18 var i Int = Int{1}
19 var j Int = Int{2}
20 var p Pair = Pair{i, j}
21 var _ bool = p.eq(p)
22 }

23 -- Field access assuming constructors KInt and KPair.
24 val (KInt y) = y
25 left (KPair (x,_)) = x
26 right (KPair (_,x)) = x
27

28 -- Interface -value construction assuming constructors KEq, KOrd.
29 toEq Int y = KEq (y, eqInt)
30 toEq Pair y = KEq (y, eqPair)
31 toEq Ord (KOrd (x,eq ,_)) = KEq (x,eq)
32

33 -- Interface -value destruction .
34 fromEq Int (KEq (KInt y, _)) = KInt y
35 fromEq Pair (KEq (KPair (x,y) , _)) = KPair (x,y)
36 fromOrdInt (KOrd (KInt y, _, _)) = KInt y
37

38 -- Method definitions .
39 eqEq (KEq (x, eq)) = eq x
40 eqInt this that = val this == val (fromEq Int that )
41 eqPair this that = eqEq (left this) (left (fromEq Pair that ))
42 && eqEq (right this) (right (fromEq Pair that ))
43 ltInt this that = eqInt this (toEqOrd that)
44 || (val this < val (fromOrdInt that ))
45 main =
46 let i = KInt 1
47 j = KInt 2
48 p = KPair (toEqInt i,toEqInt j)
49 in eqPair p (toEq Pair p)

Fig. 1. Equality and ordering in FG and its translation
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Consider the method implementation of eq for receiver this of type Int

starting at line 6. This definition takes care of equality among Int values by
making use of primitive equality == among int. We would expect argument that
to be of type Int. However, to be able to use an Int value everywhere an Eq value
is expected (to be discussed shortly), the signature of eq for Int must match
exactly the signature declared by interface Eq. Hence, that has declared type
Eq, and we resort to a type assertion, written that.(Int), to convert it to Int.
Type assertions involve a run-time check that may fail. The same observation
applies to the implementation of Eq for receiver Pair (line 9).

FG supports structural subtyping among structures and interfaces. A struc-
ture is a subtype of an interface if the structure implements the methods as
declared by the interface. For example, Int and Pair both implement inter-
face Eq. This implies the structural subtype relations (1) Int <: Eq and (2)
Pair <: Eq. Relation (1) ensures that the construction of the pair at line 20
type checks: variables i and j have type Int but can also be viewed as type Eq

thanks to structural subtyping. Relation (2) resolves the method call p.eq(p)
at line 21 as the Pair variable p also has the type Eq. The method definition
starting at line 9 will be chosen.

An interface I is a structural subtype of another interface J if I contains all
of J ’s method declarations. For example, the set of methods of interface Ord is
a superset of the method set of Eq. This implies (3) Ord <: Eq, which is used
in the method implementation of lt for receiver type Int. See line 14 where
(3) yields that variable that with declared type Ord also has type Eq. Thus, the
method call this.eq(that) is resolved via the method definition from line 6.

2.2 Dictionary-Passing Translation

We translate FG programs by applying a form of dictionary-passing translation
known from type classes [8]. As our target language we consider an untyped
functional language with pattern matching where we use Haskell style syntax
for expressions and patterns. Each FG interface translates to a pair consisting
of a structure value and a dictionary. The dictionary holds the set of methods
available as specified by the interface whereas the structure implements these
methods. We refer to such pairs as interface-values. The translation is type-
directed as we need type information to resolve method calls and construct the
appropriate dictionaries and interface values.

Lines 23-49 show the result of applying our dictionary-passing3 translation
scheme to the FG program (lines 1-22). We use a tagged representation to encode
FG structures in the target language. Hence, for each structure S, we assume
a data constructor KS , where we use pattern matching to represent field access
(lines 23-26). For example, structure Pair implies the data constructor KPair. For
convenience, we assume tuples and make use of don’t care patterns _.

A method call on an interface type translates to a lookup of the method in
the dictionary of the corresponding interface-value. Like structures, interface-

3 Technically, we are passing around interface-values wrapping dictionaries of methods.
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values are tagged in the target language. For example, line 39 introduces the
helper function eqEq to perform method lookup for method eq of interface Eq.
The constructor for an Eq interface-value is KEq. Hence, we pattern match on
KEq and extract the underlying structure value and method definition. A method
call such as this.left.eq(. . .) in the source program (line 10) with receiver
this.left of type Eq then translates to eqEq (left this) . . . (line 41).

A method call on a structure translates to the method definition for this
receiver type. For example, we write eqInt to refer to the translation of the
method definition of eq for receiver type Int. A method call such as this.eq(. . .)
in the source program (line 14) with receiver this of type Int then translates to
eqInt this . . . (line 43).

The construction of interface-values is based on structural subtype relations.
Recall the three structural subtype relations we have seen earlier: (1) Int <: Eq

and (2) Pair <: Eq and (3) Ord <: Eq. Relation (1) implies the interface-value
constructor toEqInt (line 29), which builds an Eq interface-value via the given
structure value y and a dictionary consisting only of the method eqInt. Relation
(2) implies a similar interface-value constructor toEqPair (line 30). Relation (3)
gives raise to the interface-value constructor toEqOrd (line 31), which transforms
some Ord into an Eq interface-value. We assume that in case a dictionary consists
of several methods, methods are kept in fixed order.

Type assertions imply interface-value destructors. For example, the source
expression that.(Int) (line 7) performs a run-time check, asserting that that

has type Int. In terms of the dictionary-passing translation, function fromEqInt

(line 34) performs this check. Via the pattern KEq (KInt y,) _), we assert that the
underlying target structure must result from Int. If the interface-value contains
a value not tagged with KInt, the pattern matching fails at run-time, just as
the type assertion in FG. Interface-value destructors fromEqPair and fromOrdInt

(lines 35, 36) result from similar uses of type assertions.
To summarize, each use of structural subtyping implies a interface-value con-

structor being inserted in the target program. For example, typing the source
expression p.eq(p) in line 21 relies on structural subtyping Pair <: Eq because
argument p has type Pair but method eq requires a parameter of type Eq. Thus,
the translation of this expression is eqPair p (toEqPair p) in line 49.

Similarly, type assertions imply interface-value destructors. For example, the
source expression that.(Pair).left in line 10 use a type assertion on that,
which has type Eq. Thus, it translates to the target expression left (fromEqPair

that) in line 41.
We continue by introducing FG and our target language followed by the full

details of the dictionary-passing translation.

3 Featherweight Go

Featherweight Go (FG) [7] is a tiny fragment of Go containing only structures,
methods and interfaces. Figure 2 gives the syntax of FG. With the exception of
variable bindings in function bodies, the primitive type int with operations ==

5



Field name f

Method name m

Variable name x, y

Structure type name tS, uS

Interface type name tI , uI

Type name t, u ::= tS | tI
Method signature M ::= (xi ti) t
Method specification R,S ::= mM

Expression d, e ::=
Variable x |
Method call e.m(e) |
Structure literal tS{e} |
Select e.f |
Type assertion e.(t)

Type literal L ::=

Structure struct {f t} |

Interface interface {S}

Declaration D ::=
Type type t L |
Method func (x tS) mM {return e}

Program P ::= D func main(){ = e}

D ⊢FG t <: u Subtyping

methods-struct

methods(D, tS) = {mM | func (x tS) mM {return e} ∈ D}

methods-iface

type tI interface {S} ∈ D

methods(D, tI) = {S}

sub-struct-refl

D ⊢FG tS <: tS

sub-iface

methods(D, t) ⊇ methods(D,uI)

D ⊢FG t <: uI

D ⊢FG d −→ e Reductions

Value v ::= tS{v}
Evaluation context E ::= [] | tS{v, E , e} | E .f | E .(t) | E .m(e) | v.m(v, E , e)
Substitution (FG values) Φv ::= 〈xi 7→ vi〉

fg-context

D ⊢FG d −→ e

D ⊢FG E [d] −→ E [e]

fg-field

type tS struct {f t} ∈ D

D ⊢FG tS{v}.fi −→ vi

fg-call

v = tS{v} func (x tS) m(x t) t {return e} ∈ D

D ⊢FG v.m(v) −→ 〈x 7→ v, xi 7→ vi〉e

fg-assert

v = tS{v} D ⊢FG tS <: t

D ⊢FG v.(t) −→ v

Fig. 2. Featherweight Go (FG)
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and <, and the primitive type bool with operations && and ||, we can represent
the example from Figure 2 in FG. Compared to the original presentation of
FG [7] we use symbol L instead of T (for type literals), and omit the package

keyword at the start of a FG program. Overbar notation ξ
n
denotes the sequence

ξ1 . . . ξn for some syntactic construct ξ, where in some places commas separate
the sequence items. If irrelevant, we omit the n and simply write ξ. Using the
index variable i under an overbar marks the parts that vary from sequence item
to sequence item; for example, ξ′ ξi

n
abbreviates ξ′ ξ1 . . . ξ

′ ξn and ξj
q
abbreviates

ξj1 . . . ξjq.
FG is a statically typed language. For brevity, we omit a detailed description

of the FG typing rules as they will show up in the type-directed translation. The
following conditions must be satisfied.

FG1: Structures must be non-recursive.
FG2: For each struct, field names must be distinct.
FG3: For each interface, method names must be distinct.
FG4: Each method declaration is uniquely identified by the receiver type and

method name.

FG supports structural subtyping, written D ⊢FG t <: u. A struct tS is
a subtype of an interface tI if tS implements all the methods specified by the
interface tI . An interface tI is a subtype of another interface uI if the methods
specified by tI are a superset of the methods specified by uI . The structural
subtyping relations are specified in the middle part of Figure 2.

Next, we consider the dynamic semantics of FG. The bottom part of Figure 2
specifies the reduction of FG programs by making use of structural operational
semantics rules of the form D ⊢FG d −→ e to reduce expression d to expression
e under the sequence D of declarations.

Rule fg-context makes use of evaluation contexts with holes to apply a
reduction inside an expression. Rule fg-field deals with field access. Condition
FG2 guarantees that field name lookup is unambiguous. Rule fg-call reduces
method calls. Condition FG4 guarantees that method lookup is unambiguous.
The method call is reduced to the method body e where we map the receiver
argument to a concrete value v and method arguments xi to concrete values
vi. This is achieved by applying the substitution 〈x 7→ v, xi 7→ vi〉 on e, written
〈x 7→ v, xi 7→ vi〉e.

Rule fg-assert covers type assertions. We need to check that the type tS
of value v is consistent with the type t asserted in the program text. If t is an
interface, then tS must implement all the methods as specified by this interface.
If t is a struct type, then t must be equal to tS . Both checks can be carried out
by checking that tS and t are in a structural subtype relation.

We writeD ⊢FG e −→∗ v to denote that under the declarationsD, expression
e reduces to the value v in a finite number of steps. We write D ⊢FG e −→k v to
denote that under the declarations D, expression e reduces to the value v within
at most k steps. This means we might need fewer than k steps but k are clearly
sufficient to reduce the expression to some value. If there is no such v for any
number of steps, we say that e is irreducible w.r.t. D, written irred(D, e).
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4 Target Language

Expression E ::=
Variable X | Y |
Constructor K |
Application E E |
Abstraction λX.E |

Pattern case case E of [Cls]

Pattern clause Cls ::= Pat → E

Pattern Pat ::= K X

Program Prog ::= let Yi = λXi.Ei

in E

TL values V ::= X | K V

TL evaluation context R ::= [] | K VRE | case R of [Pat → E] | R E | V R

Substitution (TL values) ΦV ::= 〈X 7→ V 〉

Substitution (TL methods) Φm ::= 〈Y 7→ λX.E〉

Φm ⊢TL E −→ E′ TL expression reductions

tl-context

Φm ⊢TL E −→ E
′

Φm ⊢TL R[E] −→ R[E′]

tl-lambda

Φm ⊢TL (λX.E) V −→ 〈X 7→ V 〉E

tl-case

K Xi
n
→ E

′ ∈ [Pat → E]

Φm ⊢TL case K Vi
n
of [Pat → E] −→ 〈Xi 7→ Vi

n
〉E′

tl-method

Φm ⊢TL Y E −→ Φm(Y ) E

⊢TL Prog −→ Prog ′ TL reductions

tl-prog

〈Yi 7→ λXi.Ei〉 ⊢TL E −→ E
′

⊢TL let Yi = λXi.Ei in E −→ let Yi = λXi.Ei in E
′

Fig. 3. Target Language (TL)

Figure 3 specifies the syntax and dynamic semantics of our target language
(TL). We use capital letters for constructs of the target language. Target ex-
pressions E include variables X,Y , data constructors K, function application,
lambda abstraction and case expressions to pattern match against constructors.
In a case expression with only one pattern clause, we often omit the brackets
and just write case E of Pat → E. A program consists of a sequence of function
definitions and a (main) expression. The function definitions are the result of
translating FG method definitions.

We assume data constructors for tuples up to some fixed but arbitrary size.
The syntax (E

n
) constructs an n-tuple when used as an expression, and decon-

structs it when used in a pattern context. At some places, we use nested patterns
as an abbreviation for nested case expressions. The notation λPat .E stands for
λX.case X of [Pat → E], where X is fresh.

Representing the example from Figure 2 in the target language requires some
more straightforward extensions: integers with operations == and <, booleans
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with operations && and ||, let-bindings inside expressions, and top-level bindings.
The target language can encode the last two features via lambda-abstractions
and top-level let-bindings.

The structural operational semantics employs two types of substitutions.
Substitution ΦV records the bindings resulting from pattern matching and func-
tion applications. Substitution Φm records the bindings for translated method
definitions (i.e. for top-level let-bindings). Target values consist of constructors
and variables. A variable may be a value if it refers to a yet to be evaluated
method binding.

Reduction of programs is mapped to reduction of expressions under a method
substitution. See rule tl-prog. The remaining reduction rules are standard.

We write Φm ⊢TL E −→∗ V to denote that under substitution Φm, expression
E reduces to the value V in a finite number of steps. We write Φm ⊢TL E −→k V

to denote that under substitution Φm, expressionE reduces to V within at most k
steps. This means we might need fewer than k steps but k are clearly sufficient. If
there is no such V for any number of steps, we say that E is irreducible w.r.t. Φm,
written irred(Φm, E).

5 Dictionary-Passing Translation

We formalize the dictionary-passing translation of FG to TL. The translation
rules are split over two figures. Figure 4 covers methods, programs and some
expressions. Figure 5 covers structural subtyping and type assertions. The trans-
lation rules are guided by type checking the FG program. The gray shaded parts
highlight target terms that are generated. If these parts are ignored, the transla-
tion rules are effectively equivalent to the FG type checking rules [7]. We assume
that conditions FG1-4 hold as well.

We use the following conventions. We assume that each FG variable x trans-
lates to the TL variable X . For each structure tS we introduce a TL constructor
KtS . For each interface tI we introduce a TL constructor KtI . In the trans-
lation, a source value of an interface type tI translates to an interface-value
tagged by KtI . The interface-value contains the underlying structure value and
a dictionary consisting of the set of methods as specified by the interface. For
each method declaration func (x tS) mM {return e} we introduce a TL variable
Xm,tS , thereby relying on FG4 which guarantees that m and tS uniquely identify
this declaration. We write ∆ to denote typing environments where we record the
types of FG variables. The notation [n] is a short-hand for the set {1, . . . , n}.

5.1 Translating programs, methods and expressions

The translation of programs and methods boils down to the translation of ex-
pressions involved. Rule td-method translates a specific method declaration, rule
td-prog collects all method declarations and also translates the main expression.
See Figure 4.
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Convention for mapping source to target terms

x X tS  KtS tI  KtI func (x tS) mM {return e} Xm,tS

FG Environment ∆ ::= {} | {x : t} | ∆ ∪∆

D ⊢meth func (x tS) m(x t) t  E Translating method declarations

td-method

distinct(x, xn) 〈D, {x : tS, xi : ti
n
}〉 ⊢exp e : t  E

D ⊢meth func (x tS) m(x t
n
) t {return e}  λX.λ(X

n
).E

⊢prog P  Prog Translating programs

td-prog

〈D, {}〉 ⊢exp e : t  E

D ⊢meth D
′
i  Ei D

′
i = func (xi tSi) miMi {return ei}

(for all i ∈ [n],where D′
n
are the func declarations in D)

⊢prog D func main(){ = e}  let Xmi,tSi
= Ei

n
in E

〈D,∆〉 ⊢exp e : t  E Translating expressions

td-var

(x : t) ∈ ∆

〈D,∆〉 ⊢exp x : t  X

td-struct

type tS struct {f t
n
} ∈ D 〈D,∆〉 ⊢exp ei : ti  Ei (for all i ∈ [n])

〈D,∆〉 ⊢exp tS{e
n} : tS  KtS (E

n
)

td-access

〈D,∆〉 ⊢exp e : tS  E type tS struct {f t
n
} ∈ D

〈D,∆〉 ⊢exp e.fi : ti  case E of KtS (X
n
) → Xi

td-call-struct

m(x t
n
) t ∈ methods(D, tS)

〈D,∆〉 ⊢exp e : tS  E 〈D,∆〉 ⊢exp ei : ti  Ei (for all i ∈ [n])

〈D,∆〉 ⊢exp e.m(en) : t  Xm,tS E (E
n
)

td-call-iface

〈D,∆〉 ⊢exp e : tI  E type tI interface {S} ∈ D

Sj = m(x t
n
) t 〈D,∆〉 ⊢exp ei : ti  Ei (for all i ∈ [n]) X,X

q
fresh

〈D,∆〉 ⊢exp e.m(en) : t  case E of KtI (X,X
q
) → Xj X (E

n
)

Fig. 4. Translation of methods, programs and expressions
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〈D,∆〉 ⊢exp e : t  E Translating structural subtyping and type assertions

td-sub

〈D,∆〉 ⊢exp e : t  E2 D ⊢iCons t <: u  E1

〈D,∆〉 ⊢exp e : u  E1 E2

td-assert

〈D,∆〉 ⊢exp e : tI  E2 D ⊢iDestr tI ց u  E1

〈D,∆〉 ⊢exp e.(u) : u  E1 E2

D ⊢iCons t <: uI  E Interface-value construction

td-cons-struct-iface

type tI interface {S} ∈ D methods(D, tS) ⊇ S S = mM
n

D ⊢iCons tS <: tI  λX.KtI (X,Xmi,tS

n
)

td-cons-iface-iface

type tI interface {R
n
} ∈ D

type uI interface {S
q
} ∈ D Si = Rπ(i) (for all i ∈ [q])

D ⊢iCons tI <: uI  λX.caseX of KtI (X,X
n
) → KuI

(X,Xπ(1), . . . , Xπ(q))

D ⊢iDestr tI ց u E Interface-value destruction

td-destr-iface-struct

type tI interface {R
n
} ∈ D D ⊢FG tS <: tI

D ⊢iDestr tI ց tS  λX.caseX of KtI (KtS Y,X
n
) → KtS Y

td-destr-iface-iface

X,Y, Y
′
, X

n
fresh type tI interface {R

n
} ∈ D

for all type tSj struct {f u} ∈ D with D ⊢iCons tSj <: uI  Ej :

Clsj = KtSj
Y

′ → (Ej (KtSj
Y

′))

D ⊢iDestr tI ց uI  λX.case X of KtI (Y,X
n
) → case Y of [Cls]

Fig. 5. Translation of structural subtyping and type assertions
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The translation rules for expressions are of the form 〈D,∆〉 ⊢exp e : t  E

where D refers to the sequence of FG declarations, ∆ refers to type binding of
local variables, e is the to be translated FG expression, t its type and E the re-
sulting target term. Departing from FG’s original typing rules [7], the translation
rules are non-syntax directed due the structural subtyping rule td-sub defined
in Figure 5. We could integrate this rule via the other rules but this would make
all the rules harder to read. Hence, we prefer to have a separate rule td-sub.

We now discuss the translations rules for the expression forms in Figure 4.
(The remaining expression forms are covered in Figure 5, to be explained in the
next section.) Rule td-var translates variables and follows our convention that x
translates to X . Rule td-struct translates a structure creation. The translated
field elements Ei are collected in a tuple and tagged via the constructor KtS .
Rule td-access uses pattern matching to capture field access in the translation.

Method calls are dealt with by rules td-call-struct and td-call-iface. Rule
td-call-struct covers the case that the receiver e is of the structure type tS . The
first precondition guarantees that an implementation for this specific method
call exists. (See Figure 2 for the auxiliary methods.) Hence, we can assume that
we have available a corresponding definition for Xm,tS in our translation. The
method call then translates to applying Xm,tS first on the translated receiver E,

followed by the translated arguments collected in a tuple (E
n
).

Rule td-call-iface assumes that receiver e is of interface type tI , so e trans-
lates to interface-value E. Hence, we pattern match on E to access the under-
lying value and the desired method in the dictionary. We assume that the order
of methods in the dictionary corresponds to the order of method declarations
in the interface. The preconditions guarantee that tI provides a method m as
demanded by the method call, where j denotes the index of m in interface tI .

5.2 Translating structural subtyping and type assertions

Rule td-sub deals with structural subtyping and yields an interface-value con-
structor derived via rules td-cons-struct-iface and td-cons-iface-iface in Fig-
ure 5. These rules correspond to the structural subtyping rules in Figure 2 but
additionally yield an interface-value constructor.

The preconditions in rule td-cons-struct-iface check that structure tS im-
plements the interface tI . This guarantees the existence of method definitions
Xmi,tS . Hence, we can construct the desired interface-value.

The preconditions in rule td-cons-iface-iface check that tI ’s methods are a
superset of uI ’s methods. This is done via the total function π : {1, . . . , q} →
{1, . . . , n} that matches each (wanted) method in uI against a (given) method in
tI . We use pattern matching over the tI ’s interface-value to extract the wanted
methods. Recall that dictionaries maintain the order of method as specified by
the interface.

Type assertions e.(u) are dealt with in rule td-assert and translate to an
interface-value destructor. In the static semantics of FG there are two cases to
consider. Both cases assume that the expression e is of some interface type tI .
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The first case asserts the type of a structure and the second case asserts the type
of an interface. Asserting that a structure is of the type of another structure is
not allowed in FG, because such a type assertion would never succeed.

Rule td-destr-iface-struct deals with the case that we assert the type of a
structure tS . If tS does not implement the interface tI , the assertion can never be
successful. Hence, we find the precondition D ⊢FG tS <: tI . We pattern match
over the interface-value that represents tI to check the underlying value matches
tS and extract the value. It is possible that some other value has been used
to implement the interface-value that represents tI . In such a case, the pattern
match fails and we experience run-time failure.

Rule td-destr-iface-iface deals with the case that we assert the type of
an interface uI on a value of type tI . The outer case expression extracts the
value Y underlying interface-value tI (this case never fails). We then check if
we can construct an interface-value for uI via Y . This is done via an inner case
expression. For each structure tSj implementing uI , we have a pattern clause Clsj
that matches against the constructor KtSj

of the structure and then constructs
an interface-value for uI . There are two reasons for run-time failure here. First,
Y (used to implement tI) might not implement uI ; that is, none of the pattern
clauses Clsj match. Second, [Cls ] might be empty because no receiver at all
implements uI . This case is rather unlikely and could be caught statically.

6 Properties

We wish to show that the dictionary-passing translation preserves the dynamic
behavior of FG programs. To establish this property we make use of (binary)
logical relations [16,20]. Logical relations express that related terms behave the
same. We say that source and target terms are equivalent if they are related
under the logical relation. The goal is to show that FG expressions and target
expressions resulting from the dictionary-passing translation are equivalent.

For example, in FG the run-time value associated with an interface type
is a structure that implements the interface whereas in our translation each
interface translates to an interface-value. To establish that a structure tS{v}
and an interface-value KtI (V, V ) are equivalent w.r.t. some interface tI we need
to require that

– (Struct-I-Val-1) tS{v} and V are equivalent w.r.t. tS , and
– (Struct-I-Val-2) method definitions for receiver type tS are equivalent to V .

Because signatures in method specifications of an interface may refer to
the interface itself, there may be cyclic dependencies that then result in well-
foundness issues of the definition of logical relations. To solve this issue we include
a step index [1]. We explain this technical point via the example in Figure 1. We
will write e ≈ E ∈ JtKk to denote that FG expression e and TL expression E are
in a logical relation w.r.t. the FG type t, where k is the step index. Similarly,
func (x tS) R {return e} ≈ V ∈ JRKk expresses that a FG method declaration
and a TL value V are in a logical relation w.r.t. the FG method specification R.
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e ≈ E ∈ JtK
〈D,Φm〉
k FG expressions versus TL expressions

red-rel-exp

∀k1 < k, k2 < k, v, V.(k − k1 − k2 > 0 ∧D ⊢FG e −→k1 v ∧ Φm ⊢TL E −→k2 V )

=⇒ v ≈ V ∈ JtK
〈D,Φm〉
k−k1−k2

e ≈ E ∈ JtK
〈D,Φm〉
k

v ≈ V ∈ JtK
〈D,Φm〉
k FG values versus TL values

red-rel-struct

type tS struct {f t
n
} ∈ D ∀i ∈ [n].vi ≈ Vi ∈ JtiK

〈D,Φm〉
k

tS{v
n} ≈ KtS (V

n
) ∈ JtSK

〈D,Φm〉
k

red-rel-iface

V = KuS
V ′ ∀k1 < k.v ≈ V ∈ JuSK

〈D,Φm〉
k1

methods(D, tI) = {mM
n
}

∀k2 < k, i ∈ [n].methodLookup(D, (mi, uS)) ≈ Vi ∈ JmiMiK
〈D,Φm〉
k2

v ≈ KtI (V, V
n
) ∈ JtIK

〈D,Φm〉
k

func (x tS) mM {return e} ≈ V ∈ JmMK
〈D,Φm〉
k FG methods versus TL methods

red-rel-method

∀k′ ≤ k, v
′
, V

′
, vi

n
, Vi

n
.(v′ ≈ V

′ ∈ JtSK
〈D,Φm〉
k′ ∧ (∀i ∈ [n].vi ≈ Vi ∈ JtiK

〈D,Φm〉
k′ ))

=⇒ 〈x 7→ v
′
, xi 7→ vi

n〉e ≈ (V V
′) (V

n
) ∈ JtK

〈D,Φm〉
k′

func (x tS) m(x t
n
) t {return e} ≈ V ∈ Jm(x t

n
) tK

〈D,Φm〉
k

〈D,Φm, ∆〉 ⊢k
red−rel Φv ≈ ΦV FG versus TL value bindings

red-rel-vb

∀(x : t) ∈ ∆.Φv(x) ≈ ΦV(X) ∈ JtK
〈D,Φm〉
k

〈D,Φm,∆〉 ⊢k
red−rel Φv ≈ ΦV

⊢k
red−rel D ≈ Φm FG declarations versus TL method bindings

red-rel-decls

∀ func (x tS) mM {return e} ∈ D :

func (x tS) mM {return e} ≈ Xm,tS ∈ JmMK
〈D,Φm〉
k

⊢k
red−rel D ≈ Φm

Fig. 6. Relating FG to TL Reduction
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Consider the FG expression Int{1} from example in Figure 1. When viewed
at type Eq, our translation yields the interface-value KEq (KInt 1, eqInt). We
need to establish Int{1} ≈ KEq (KInt 1, eqInt) ∈ JEqKk1

.

(1) Int{1} ≈ KEq (KInt 1, eqInt) ∈ JEqKk1

if (2) Int{1} ≈ KInt 1 ∈ JIntKk2
and

(3) func (x Int) eq(y Eq) bool {returne} ≈ eqInt ∈ Jeq(y Eq) boolKk3

where k2 < k1, k3 < k1

if (4) ∀v1 ≈ V1 ∈ JIntKk4
, v2 ≈ V2 ∈ JEqKk4

.

〈x 7→ v1, y 7→ v2〉e ≈ eqInt V1 V2 ∈ JboolKk4
where k4 ≤ k3

Following (Struct-I-Val-1) and (Struct-I-Val-2), (1) holds if we can establish
(2) and (3). (2) is easy to establish. (3) holds if we can establish (4). (4) states
that for equivalent inputs the respective method definitions are equivalent as
well. Without the step index, establishing . ≈ . ∈ JEqK would reduce to estab-
lishing . ≈ . ∈ JEqK. We are in a cycle. With the step index, . ≈ . ∈ JEqKk1

reduces to . ≈ . ∈ JEqKk4
where k4 < k1. The step index represents the number

of reduction steps we can take and will be reduced for each reduction step. Thus,
we can give a well-founded definition of our logical relations.

Figure 6 gives the step-indexed logical relations to relate FG and TL terms.
Rule red-rel-exp relates FG and TL expressions. The expressions are in a rela-
tion assuming that the resulting values are in a relation where we impose a step
limit on the number of reduction steps that can be taken. We additionally find
parameters D and Φm as FG and TL expressions refer to method definitions.

Rule red-rel-struct is straightforward. Rule red-rel-iface has been mo-
tivated above. We make use of the following helper function to lookup up the
method definition for a specific pair of method name and receiver type.

func (x tS) mM {return e} ∈ D

methodLookup(D, (m, tS)) = func (x tS) mM {return e}

Rule red-rel-method covers method definitions. Rule red-rel-vb ensures
that the substitutions from free variables to values are related. Rule red-rel-decls
ensures that our labeling for the translation of method definitions is consistent.

A fundamental property of step-indexed logical relations is that if two ex-
pressions are in a relation for k steps then they are also in a relation for any
smaller number of steps.

Lemma 1 (Monotonicity). Let e ≈ E ∈ JtK
〈D,Φm〉
k and k′ ≤ k. Then, we find

that e ≈ E ∈ JtK
〈D,Φm〉
k′ .

Proof. By induction over the derivation e ≈ E ∈ JtK
〈D,Φm〉
k .

Case red-rel-exp:

∀k1 < k, k2 < k, v, V.(k − k1 − k2 > 0 ∧D ⊢FG e −→k1 v ∧ Φm ⊢TL E −→k2 V )

=⇒ v ≈ V ∈ JtK
〈D,Φm〉
k−k1−k2

e ≈ E ∈ JtK
〈D,Φm〉
k
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If either e or E is irreducible, e ≈ E ∈ JtK
〈D,Φm〉
k′ holds immediately because

the universally quantified statement in the premise holds vacuously.
Otherwise, we find D ⊢FG e −→k1 v and Φm ⊢TL E −→k2 V for some k1

and k2. If k
′ − k1 − k2 ≤ 0, e ≈ E ∈ JtK

〈D,Φm〉
k′ holds again immediately.

Otherwise, by induction applied on the premise of rule red-rel-exp we find

that v ≈ V ∈ JtK
〈D,Φm〉
k′−k1−k2

and we are done for this case.
Case red-rel-struct:

type tS struct {f t
n
} ∈ D ∀i ∈ [n].vi ≈ Vi ∈ JtiK

〈D,Φm〉
k

tS{v
n} ≈ KtS (V

n
) ∈ JtSK

〈D,Φm〉
k

Follows immediately by induction.
Case red-rel-iface:

V = KuS
V ′

(1) ∀k1 < k.v ≈ V ∈ JuSK
〈D,Φm〉
k1

methods(D, tI) = {mM
n
}

(2) ∀k2 < k, i ∈ [n].methodLookup(D, (mi, uS)) ≈ Vi ∈ JmiMiK
〈D,Φm〉
k2

v ≈ KtI (V, V
n
) ∈ JtIK

〈D,Φm〉
k

Consider the first premise (1). If there exists k1 < k′ then v ≈ V ∈ JuSK
〈D,Φm〉
k1

.
Otherwise, this premise holds vacuously. The same argument for k2 < k′ applies

to the second premise (2). Hence, v ≈ KtI (V, Vi
n
) ∈ JtIK

〈D,Φm〉
k′ . ⊓⊔

A similar monotonicity result applies to method definitions and declarations.
Monotonicity is an essential property to obtain the following results.

Interface-value constructors and destructors preserve equivalent expressions
via logical relations as stated by the following results.

Lemma 2 (Structural Subtyping versus Interface-Value Constructors).

Let D ⊢iCons t <: u  E1 and ⊢k
red−rel D ≈ Φm and e ≈ E2 ∈ JtK

〈D,Φm〉
k . Then,

we find that e ≈ E1 E2 ∈ JuK
〈D,Φm〉
k .

Lemma 3 (Type Assertions versus Interface-Value Destructors). Let

D ⊢iDestr t ց u  E1 and ⊢k
red−rel D ≈ Φm and e ≈ E2 ∈ JtK

〈D,Φm〉
k . Then, we

find that e.(u) ≈ E1 E2 ∈ JuK
〈D,Φm〉
k .

Based on the above we can show that target expressions resulting from FG
expressions and target methods resulting from FG methods are equivalent.

Lemma 4 (Expression Equivalence). Let 〈D,∆〉 ⊢exp e : t  E and Φv,

ΦV, Φm such that 〈D,Φm, ∆〉 ⊢k
red−rel Φv ≈ ΦV and ⊢k

red−rel D ≈ Φm for some k.

Then, we find that Φv(e) ≈ ΦV(E) ∈ JtK
〈D,Φm〉
k .

Lemma 5 (Method Equivalence).
Let D ⊢meth func (x tS) m(x t

n
) t {return e}  λX.λ(X

n
).E. Then, we find

that ⊢k
red−rel D ≈ Φm where Φm(Xm,tS ) = λX.λ(X

n
).E for any k.
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The lengthy proofs of the above results are given in the appendix.
From Lemmas 4 and 5 we can derive our main result that the dictionary-

passing translation preserves the dynamic behavior of FG programs.

Theorem 1 (Program Equivalence). Let ⊢prog D func main(){ = e}  

let Xmi,tSi
= Ei

n
in E where we assume that e has type t. Then, we find that

e ≈ E ∈ JtK
〈D,Φm〉
k for any k where Φm = 〈Xmi,tSi

7→ Ei
n
〉.

Proof. Follows from Lemmas 4 and 5. ⊓⊔

Our main result also implies that our translation is coherent. Recall that the
translation rules are non-syntax directed because of rule td-sub. Hence, we could
for example insert an (albeit trivial) interface-value constructor resulting from
D ⊢iCons tI <: tI  E. Hence, there might be different target terms for the
same source term. Our main result guarantees that all targets obtained preserve
the meaning of the original program.

7 Related Work and Conclusion

The dictionary-passing translation is well-studied in the context of Haskell type
classes [24]. A type class constraint translates to an extra function parameter,
constraint resolution provides a dictionary with the methods of the type class
for this parameter. In our translation from Featherweight Go [7], dictionaries are
not supplied as separate parameters because FG does not support parametric
polymorphism. Instead, a dictionary is always passed as part of an interface-
value, which combines the dictionary with the concrete value implementing the
interface. Thus, interface-values can be viewed as representations of existential
types [13,10,23]. How to adapt our dictionary-passing translation scheme to FG
extended with parametric polymorphism (generics) is something we plan to con-
sider in future work.

In the context of type classes it is common to show that resulting target
programs are well-typed. For example, see the work by Hall and coworkers [8].
Typed target terms in this setting require System F and richer variants depend-
ing on the kind of type class extensions that are considered [19]. Our target
terms are untyped and we pattern match over constructors to check for “run-
time types”. For example, see rule td-destr-iface-struct in Figure 5. There
are various ways to support dynamic typing in a typed setting. For example,
we could employ GADTs as described by Peyton Jones and coworkers [9]. A
simply-typed first order functional language with GADTs appears then to be
sufficient as a typed target language for Featherweight Go. This will require
certain adjustments to our dictionary-passing translation. We plan to study the
details in future work.

Another important property in the type class context is coherence. Bottu and
coworkers [3] make use of logical relations to state equivalence among distinct
target terms resulting from the same source type class program. Thanks to our
main result Theorem 1, we get coherence for free. We believe it is worthwhile
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to establish a property similar to Theorem 1 for type classes. We could employ
a simple denotational semantics for source type class programs such as [21,14]
which is then related to target programs obtained via the dictionary-passing
translation. This is something that has not been studied so far and another
topic for future work.

Method dictionaries bear some resemblance to virtual method tables (vta-
bles) used to implement virtual method dispatch in object-oriented languages [5].
The main difference between vtables and dictionaries is that there is a fixed con-
nection between an object and its vtable (via the class of the object), whereas
the connection between a value and a dictionary may change at runtime, de-
pending on the type the value is used at. Dictionaries allow access to a method
at a fixed offset, whereas vtables in the presence of multiple inheritance require
a more sophisticated lookup algorithm [2].

Subtyping for interfaces in Go is based purely on width subtyping, there
is no support for depth subtyping [15]: a subtype might provide more methods
than the super-interface, but method signatures must match invariantly. Method
dispatch in Go is performed only on the receiver of the method call. Multi-
dispatch [18,4] refers to the ability to dispatch on multiple arguments, but this
approach turns out to be difficult in combination with structural subtyping [11].

To summarize the results of the paper at hand: we defined a dictionary-
passing translation from Featherweight Go to a untyped lambda calculus with
pattern matching. The compiler for the full Go language [22] employs a simi-
lar dictionary-passing approach. We proved that the translation preserves the
dynamic semantics of Featherweight Go, using step-indexed logical relations.
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A Proofs for Properties Stated in the Main Text

A.1 Monotonicity for Method Definitions and Declarations

Lemma 6 (Monotonicity 2). Let func (x tS) mM {return e} ≈ V ∈ JmMK
〈D,Φm〉
k

and k′ ≤ k. Then, we find that func (x tS) mM {return e} ≈ V ∈ JmMK
〈D,Φm〉
k′ .

Proof. Follows immediately by observing the premise of rule red-rel-method.
⊓⊔

Lemma 7 (Monotonicity 3). Let ⊢k
red−rel D ≈ Φm and k′ ≤ k. Then, we find

that ⊢k′

red−rel D ≈ Φm.

Proof. Follows via Lemma 6. ⊓⊔
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A.2 Lemma 2

Proof. We show that e ≈ E1 E2 ∈ JuK
〈D,Φm〉
k by making use of the following

auxiliary statement.

Let D ⊢iCons t <: u E and ⊢k
red−rel D ≈ Φm and v ≈ V ∈ JtK

〈D,Φm〉
k . Then,

we find that v ≈ E V ∈ JuK
〈D,Φm〉
k .

Suppose k1 < k and k2 < k and k − k1 − k2 > 0 and (1) D ⊢FG e −→k1 v

for some v and (2) Φm ⊢TL E2 −→k2 V for some V . Based on the assumption

that e ≈ E2 ∈ JtK
〈D,Φm〉
k and via rule red-rel-exp we conclude that v ≈ V ∈

JtK
〈D,Φm〉
k−k1−k2

.

Via the auxiliary statement we conclude that (3) v ≈ E1 V ∈ JuK
〈D,Φm〉
k−k1−k2

.
Via rule red-rel-exp making use of (1), (2) and (3) we conclude that e ≈

E1 E2 ∈ JuK
〈D,Φm〉
k and we are done.

Proof of auxiliary statement.
We have to show that for all k2 < k where k−k2 > 0 and Φm ⊢TL E V −→k2

V ′ we have that v ≈ V ′ ∈ JtK
〈D,Φm〉
k−k2

.

We perform a case analysis of the derivation for D ⊢iCons t <: u  E and

label the assumptions (1) ⊢k
red−rel D ≈ Φm and (2) v ≈ V ∈ JtK

〈D,Φm〉
k for later

reference.
Case td-cons-struct-iface:

type tI interface {S} ∈ D methods(D, tS) ⊇ S S = mM
n

D ⊢iCons tS <: tI  λX.KtI (X,Xmi,tS

n
)

Set E = λX.KtI (X,Xmi,tS

n
). Then, (3) Φm ⊢TL E V −→1 V ′ where

V ′ = KtI (V,Xmi,tS

n
).

From (1) and Lemma 7 we obtain (4) ∀k1 < k. ⊢k1

red−rel D ≈ Φm.

From (2) and Lemma 1 we obtain (5) ∀k2 < k.v ≈ V ∈ JtSK
〈D,Φm〉
k2

(for this
case t = tS).

From (4), (5) and via rule red-rel-iface we obtain (6) v ≈ V ′ ∈ JtIK
〈D,Φm〉
k .

From (3), (6) and via rule red-rel-exp we obtain v ≈ E V ∈ JtIK
〈D,Φm〉
k and

we are done for this case.
Case td-cons-iface-iface:

type tI interface {Ri
n
} ∈ D

type uI interface {Si
q
} ∈ D Si = Rπ(i) (for all i ∈ [q])

D ⊢iCons tI <: uI  λX.caseX of KtI (Xval , Xi
n
) → KuI

(Xval , Xπ(i)
q
)

From (2) and for this case we can conclude via rule red-rel-iface that (3)
V = KtI (V

′, Vi
n
) for some uS, V

′ and Vi
n
wheremethods(D, tI) = {miMi

n
} and

(4) ∀k1 < k.v ≈ V ′ ∈ JuSK
〈D,Φm〉
k1

and (5) ∀k2 < k, i ∈ [n].methodLookup(D, (mi, uS)) ≈

Vi ∈ JmiMiK
〈D,Φm〉
k2

.
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Set E = λX.caseX of KtI (Xval , Xi
n
) → KuI

(Xval , Xπ(i)
q
). Then, (6)

Φm ⊢TL E V −→1 V ′′ where (7) V ′′ = KuI
(V ′, Vπ(i)

q
).

From (4), (5) and (7) via rule red-rel-iface we obtain that (8) v ≈ V ′′ ∈

JuIK
〈D,Φm〉
k .

From (6), (8) and via rule red-rel-exp we obtain v ≈ E V ∈ JuIK
〈D,Φm〉
k and

we are done. ⊓⊔

A.3 Lemma 3

We first introduce an auxiliary statement.

Lemma 8. Let e′ ≈ E′ ∈ JtK
〈D,Φm〉
k and D ⊢FG e −→k1 e′ and Φm ⊢TL E −→k2

E′. Then, we find that e ≈ E ∈ JtK
〈D,Φm〉
k+k1+k2

Proof. If either e′ or E′ are irreducible the result follows immediately.
Otherwise, based on rule red-rel-exp we find that D ⊢FG e′ −→k′

1 v and

Φm ⊢TL E′ −→k′

2 V and v ≈ V ∈ JtK
〈D,Φm〉
k−k′

1
−k′

2

.

Based on the above, our assumptions and rule red-rel-exp we find that

e ≈ E ∈ JtK
〈D,Φm〉
k+k1+k2

and we are done. ⊓⊔

Here comes the proof of Lemma 3.

Proof. We perform a case analysis of the derivation D ⊢iDestr t ց u  E1 and

label the assumptions (1) ⊢k
red−rel D ≈ Φm and (2) e ≈ E2 ∈ JtK

〈D,Φm〉
k for later

reference.
Case td-destr-iface-struct:

type tI interface {S
n
} ∈ D D ⊢FG tS <: tI

D ⊢iDestr tI ց tS  λX.caseX of KtI (KtS Y ,X
n
) → KtS Y

We set E1 = λX.caseX of KtI (KtS Y ,X
n
) → KtS Y .

From (2) and via rule red-rel-exp we conclude that forall k1 < k, k2 < k, v,
V where (3) k−k1−k2 > 0 and (4)D ⊢FG e −→k1 v and (5) Φm ⊢TL E2 −→k2 V

we have that (6) v ≈ V ∈ JtIK
〈D,Φm〉
k−k1−k2

.

From (6) and rule red-rel-iface we conclude that (7) V = KtI (KRepuS
, V, Vi

n
)

where V = KuS
V ′ and for all (8) k′1 < k − k1 − k2 we have that (9) v ≈ V ∈

JusK
〈D,Φm〉
k′

1

.

Subcase tS 6= uS: Neither e.(tS) nor E1 E2 are reducible and therefore we

immediately can conclude that e ≈ E1 E2 ∈ JtSK
〈D,Φm〉
k holds.

Subcase tS = uS: From (4) we conclude that (10) D ⊢FG e.(tS) −→
k1+1 v.

From (5) and (7) we conclude that (11) Φm ⊢TL E1 E2 −→k2+3 V . There
are three additional reduction steps as we have one extra lambda and two extra
pattern match applications.
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From (8) and (9) and the Monotonicity Lemma 1 we conclude that v ≈

V ∈ JtsK
〈D,Φm〉
k−(k1+1)−(k2+3) and via rule red-rel-exp we obtain that e ≈ E1 E2 ∈

JtSK
〈D,Φm〉
k and we are done for this case.

Case td-destr-iface-iface:

type tI interface {S
n
} ∈ D

Cls = [KtS Y → (E Xval) | D ⊢iCons tS <: uI  E]

D ⊢iDestr tI ց uI  λX.case X of KtI (Xval , X
n
) → case Xrep of Cls

We set E1 = λX.case X of KtI (Xval , X
n
) → case Xrep of Cls .

We apply similar reasoning as in case of td-destr-iface-struct.

From (2) and via rule red-rel-exp we conclude that forall k1 < k, k2 < k, v,
V where (3) k−k1−k2 > 0 and (4)D ⊢FG e −→k1 v and (5) Φm ⊢TL E2 −→k2 V

we have that (6) v ≈ V ∈ JtIK
〈D,Φm〉
k−k1−k2

.

From (6) and rule red-rel-iface we conclude that (7) V = KtI (V, Vi
n
) where

V = KtS V ′ and for all (8) k′1 < k−k1−k2 we have that (9) v ≈ V ∈ JtsK
〈D,Φm〉
k′

1

.

We use here tS (instead of uS) to match the naming conventions in the premise
of rule td-destr-iface-iface.
Subcase D ⊢FG tS <: uI does not hold:Neither e.(tS) nor E1 E2 are reducible

and therefore we immediately can conclude that e ≈ E1 E2 ∈ JtSK
〈D,Φm〉
k holds.

Subcase D ⊢FG tS <: uI does hold: From (4) we conclude that (10) D ⊢FG

e.(uI) −→
k1 v.

From (5) and (7) we conclude that (11) Φm ⊢TL E1 E2 −→k2+3 E V where
(12) D ⊢iCons tS <: uI  E. There are three additional reduction steps as we
have one extra lambda and two extra pattern match applications. The upcast E
has not been applied.

From (6) and (12) and Lemma 2 we obtain that (13) v ≈ E V ∈ JuIK
〈D,Φm〉
k′

1

.

Via the Monotonicity Lemma 1 and Lemma 8 we obtain that e.(uI) ≈

E1 E2 ∈ JuIK
〈D,Φm〉
k and we are done. ⊓⊔

A.4 Lemma 4

Proof. By induction over the derivation 〈D,∆〉 ⊢exp e : t  E. We label the
assumptions (1) 〈D,Φm, ∆〉 ⊢k

red−rel Φv ≈ ΦV and (2) ⊢k
red−rel D ≈ Φm as well

as the to be proven statement (3) Φv(e) ≈ ΦV(E) ∈ JtK
〈D,Φm〉
k for some later

reference.
Case td-var:

(x : t) ∈ ∆

〈D,∆〉 ⊢exp x : t X

(3) follows immediately from (1).
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Case td-struct:

type tS struct {fi tin} ∈ D 〈D,∆〉 ⊢exp ei : ti  Ei (for all i ∈ [n])

〈D,∆〉 ⊢exp tS{ei
n} : tS  KtS (Ei

n
)

Suppose there exists k1 < k and k2 < k and v and V such that (k−k1−k2 > 0
and (4) D ⊢FG Φv(ts{ei

n}) −→k1 ts{vi
n} and (5) Φm ⊢TL ΦV(KtS (Ei

n
)) −→k2

KtS (Vi
n
) for i ∈ [n].

From (4) and (5) we conclude that (6) D ⊢FG Φv(ei) −→k′

1 vi and (7)
Φm ⊢TL ΦV(Ei) −→

k′

2 Vi for i ∈ [n] where we pick k′1 and k2’ such that k′1 < k1
and k′2 < k2 and all the subreductions yield some value.

By induction (8) Φv(ei) ≈ ΦV(Ei) ∈ JtiK
〈D,Φm〉
k for i ∈ [n].

From (6), (7), (8) and via rule red-rel-exp we conclude that (9) vi ≈ Vi ∈

JtiK
〈D,Φm〉
k−k′

1
−k′

2

for i ∈ [n].

From (9) and rule red-rel-struct we conclude that (10) tS{vi
n} ≈ KtS (Vi

n
) ∈

JtSK
〈D,Φm〉
k−k′

1
−k′

2

.

From (10) and Lemma 1 we conclude that (11) tS{vi
n} ≈ KtS (Vi

n
) ∈

JtSK
〈D,Φm〉
k−k1−k2

.
From (4), (5), (11) and via rule red-rel-exp we conclude that Φv(ts{ei

n}) ≈

ΦV(KtS (Ei
n
)) ∈ JtSK

〈D,Φm〉
k and we are done for this case.

Case td-access:

〈D,∆〉 ⊢exp e : tS  E type tS struct {fj tj
n
} ∈ D

〈D,∆〉 ⊢exp e.fi : ti  case E of KtS (Xj
n
) → Xi

Similar reasoning as in case of td-struct.
Case td-call-struct:

m(xi ti
n
) t ∈ methods(D, tS)

〈D,∆〉 ⊢exp e : tS  E 〈D,∆〉 ⊢exp ei : ti  Ei (for all i ∈ [n])

〈D,∆〉 ⊢exp e.m(ei
n) : t Xm,tS E (Ei

n
)

Suppose there exists k1 < k and k2 < k and v and V such that (k−k1−k2 > 0
and (4) D ⊢FG Φv(e.m(ei

n)) −→k1 v and (5) Φm ⊢TL ΦV(Xm,tS E (Ei
n
)) −→k2

V .
From the assumptions and (4) we conclude that (4a)D ⊢FG Φv(e.m(ei

n)) −→1

〈x 7→ Φv(e), xi 7→ Φv(ei)
n
〉e′ and (4b)D ⊢FG 〈x 7→ Φv(e), xi 7→ Φv(ei)

n
〉e′ −→k1−1

v where (4c) func (x tS) m(xi ti
n
) t {return e′} ∈ D.

From (4) we conclude that (6) D ⊢FG Φv(e) −→k′

1 v′ and (7) D ⊢FG

Φv(ei) −→k′

1 vi for some v′ and vi for i ∈ [n] where k′1 < k1. We pick again
some large enough k′1 such that all subreductions yields some value.

Similarly, from (5) we conclude that (8) Φm ⊢TL ΦV(E) −→k′

2 V ′ and (9)
Φm ⊢TL ΦV(Ei) −→

k′

2 Vi for some V ′ and Vi for i ∈ [n] where k′2 < k2.

By induction we have that (10) Φv(e) ≈ ΦV(E) ∈ JtSK
〈D,Φm〉
k and (11) Φv(ei) ≈

ΦV(Ei) ∈ JtiK
〈D,Φm〉
k for i ∈ [n].
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From (6), (8), (10) and via rule red-rel-exp we conclude that (12) v′ ≈ V ′ ∈

JtSK
〈D,Φm〉
k−k′

1
−k′

2

.

Similarly, from (7), (9), (11) and via rule red-rel-exp we conclude that (13)

vi ≈ Vi ∈ JtiK
〈D,Φm〉
k−k′

1
−k′

2

for i ∈ [n].

From (4c), (12), (13), (3) and via rule red-rel-method we conclude that (14)

〈x 7→ v, xi 7→ vi
n〉e′ ≈ Xm,tS V ′ (Vi

n
) ∈ JtK

〈D,Φm〉
k−k′

1
−k′

2

.

Based on our choice of k′1 and k′2 we conclude that (15) D ⊢FG 〈x 7→
v, xi 7→ vi

n〉e′ −→k1−k′

1 v and (16) Φm ⊢TL Xm,tS V ′ (Vi
n
) −→k2−k′

2 V . That is,
with k1 − k′1 steps or less we reach v because k1 is the overall number of steps
required and k′1 is the maximum number of one of the subcomputation steps.
The same applies to k2 − k′2.

From (14), (15), (16) and via rule red-rel-exp we conclude that v ≈ V ∈

JtK
〈D,Φm〉
k−k1−k2

where we make use of the fact that k−k′1−k′1−(k1−k′1)−(k2−k′2) =
k − k1 − k2. Thus, we are done for this case.
Case td-call-iface:

〈D,∆〉 ⊢exp e : tI  E

type tI interface {Si
q
} ∈ D Sj = m(xi ti

n
) t (for some j ∈ [q])

〈D,∆〉 ⊢exp ei : ti  Ei (for all i ∈ [n])

〈D,∆〉 ⊢exp e.m(ei
n) : t case E of KtI (Xval , Xi

q
) → Xj Xval (Ei

n
)

Similar reasoning as in case of td-call-struct. We set

E′ = case E of KtI ( , Xval , Xi
q
) → Xj Xval (Ei

n
).

Suppose there exists k1 < k and k2 < k and v and V such that (k−k1−k2 > 0
and (4) D ⊢FG Φv(e.m(ei

n)) −→k1 v and (5) Φm ⊢TL ΦV(E
′) −→k2 V .

From the assumptions and (4) we conclude that (4a)D ⊢FG Φv(e.m(ei
n)) −→1

〈x 7→ Φv(e), xi 7→ Φv(ei)
n
〉e′ and (4b)D ⊢FG 〈x 7→ Φv(e), xi 7→ Φv(ei)

n
〉e′ −→k1−1

v where (4c) func (x tS) m(xi ti
n
) t {return e′} ∈ D.

From (4) we conclude that (6) D ⊢FG Φv(e) −→k′

1 v′ and (7) D ⊢FG

Φv(ei) −→k′

1 vi for some v′ and vi for i ∈ [n] where k′1 < k1. We pick again
some large enough k′1 such that all subreductions yields some value.

Similarly, from (5) we conclude that (8) Φm ⊢TL ΦV(E) −→k′

2 V ′ and (9)
Φm ⊢TL ΦV(Ei) −→

k′

2 Vi for some V ′ and Vi for i ∈ [n] where k′2 < k2.

By induction we have that (10) Φv(e) ≈ ΦV(E) ∈ JtSK
〈D,Φm〉
k and (11) Φv(ei) ≈

ΦV(Ei) ∈ JtiK
〈D,Φm〉
k for i ∈ [n].

From (6), (8), (10) and via rule red-rel-exp we conclude that (12) v′ ≈ V ′ ∈

JtIK
〈D,Φm〉
k−k′

1
−k′

2

.

Similarly, from (7), (9), (11) and via rule red-rel-exp we conclude that (13)

vi ≈ Vi ∈ JtiK
〈D,Φm〉
k−k′

1
−k′

2

for i ∈ [n].

From (12) and via red-rel-iface we conclude that (13) V ′ = KtI (V ′′, V ′
i

p
)

and V ′′ = KtS V ′′′ and (14) v′ ≈ V ′′ ∈ JtSK
〈D,Φm〉
k′′ and (15) func (x tS)m(xi ti

n
) t {return e′} ≈
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V ′
j ∈ Jm(xi ti

n
)K

〈D,Φm〉
k′′ for some k′′ where k′′ < k − k′1 − k′2 and j ∈ [q] is the

same j as in the premise of rule td-call-iface.
From (15) via rule red-rel-method and (14) and (13) plus the Monotonicity

Lemma 1 we conclude that (16) 〈x 7→ v′, xi 7→ vi
n〉e′ ≈ V ′

j V ′′ (Vi
n
) ∈ JtK

〈D,Φm〉
k′′ .

For concreteness, we can assume k′′ = k − k′1 − k′2 − 1. Based on our choice
of k′1 and k′2 we conclude that (17) D ⊢FG 〈x 7→ v, xi 7→ vi

n〉e′ −→k1−k′

1 v and
(18) V ′

j V ′′ (Vi
n
) ⊢TL V −→k2−k′

2
+1. The argument is the same as in case of

td-call-struct.
From (16), (17), (18) and via rule red-rel-exp we conclude that v ≈ V ∈

JtK
〈D,Φm〉
k−k1−k2

and we are done for this case.
Case td-sub:

〈D,∆〉 ⊢exp e : t E2 D ⊢iCons t <: u E1

〈D,∆〉 ⊢exp e : u E1 E2

By induction we obtain that (4) Φv(e) ≈ ΦV(E2) ∈ JtK
〈D,Φm〉
k . From (3), (4)

and Lemma 2 we obtain that Φv(e) ≈ E1 ΦV(E2) ∈ JuK
〈D,Φm〉
k .

We have that ΦV(E1) = E1 and thus we are done for this case.
Case td-assert:

〈D,∆〉 ⊢exp e : u E2 D ⊢iDestr u ց t E1

〈D,∆〉 ⊢exp e.(t) : t E1 E2

By induction we obtain that (4) Φv(e) ≈ ΦV(E2) ∈ JuK
〈D,Φm〉
k . From (3), (4)

and Lemma 3 we obtain that Φv(e).(t) ≈ E1 ΦV(E2) ∈ JtK
〈D,Φm〉
k .

We have that ΦV(E1) = E1 and thus we are done for this case. ⊓⊔

A.5 Lemma 5

Proof. Based on rules red-rel-decls and red-rel-method, for

func (x tS) m(xi ti
n
) t {return e} ∈ D

we have to show that

∀k′ ≤ k, v′, V ′, vi
n, Vi

n
.(v′ ≈ V ′ ∈ JtSK

〈D,Φm〉
k′ ∧ (∀i ∈ [n].vi ≈ Vi ∈ JtiK

〈D,Φm〉
k′ ))

=⇒ (1) 〈x 7→ v′, xi 7→ vi
n〉e ≈ (Xx,tS V ′) (Vi

n
) ∈ JtK

〈D,Φm〉
k′

We verify the result by induction on k.
Case k = 1: We must perform several reductions on (Xx,tS V ′) (Vi

n
) to obtain a

value. Due to k = 1 the premise of rule red-rel-exp holds vacuously. Therefore,
we can immediately establish (1).
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Case k =⇒ k + 1: Suppose k′ ≤ k + 1 and (2) v′ ≈ V ′ ∈ JtSK
〈D,Φm〉
k′ and (3)

vi ≈ Vi ∈ JtiK
〈D,Φm〉
k′ for some v′, V ′, vi, Vi for i ∈ [n].

Suppose 〈x 7→ v′, xi 7→ vi
n〉e and (Xx,tS V ′) (Vi

n
) are reducible. Otherwise,

the result holds immediately.
We have to show that for (4) D ⊢FG 〈x 7→ v′, xi 7→ vi

n〉e −→k1 v′′ and (5)
Φm ⊢TL (Xx,tS V ′) (Vi

n
) −→k2 V ′′ and k + 1 − k1 − k2 > 0 we have that (6)

v′′ ≈ V ′′ ∈ JtK
〈D,Φm〉
k+1−k1−k2

.

From (5) we can conclude that (7) Φm ⊢TL (Xx,tS V ′) (Vi
n
) −→1 λX.λ(Xi

n
).E −→2

〈X 7→ V ′, Xi 7→ Vi
n
〉E −→k′

2 V ′′ where (8) k2 = k′2 + 3.
By induction we have that (9) ⊢k

red−rel D ≈ Φm.
From (2) and (3) and the Monotonicity Lemma 1 we find that (10) v′ ≈ V ′ ∈

JtSK
〈D,Φm〉
k′′ and (11) vi ≈ Vi ∈ JtiK

〈D,Φm〉
k′′ where k′′ ≤ k for i ∈ [n].

By making use of (9), (10) and (11) we apply Lemma 4 on

D ⊢meth func (x tS) m(xi ti
n
) t {return e} λX.λ(Xi

n
).E

and thus obtain that (12) 〈x 7→ v′, xi 7→ vi
n〉e ≈ 〈X 7→ V ′, Xi 7→ Vi

n
〉E ∈

JtK
〈D,Φm〉
k .
From (12), (4) and (7) via rule red-rel-exp we conclude that (11) v′′ ≈ V ′′ ∈

JtK
〈D,Φm〉
k−k1−k′

2

.

From (8) we conclude that (12) k + 1− k1 − k2 = k − k1 − k′2 − 2.
From (11), (12) and the Monotonicity Lemma 1 we conclude that v′′ ≈ V ′′ ∈

JtK
〈D,Φm〉
k−k1−k′

2
−2 and we are done. ⊓⊔
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