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Abstract We present a complete optimization procedure for hybrid
quantum-classical circuits with classical parity logic. While common op-
timization techniques for quantum algorithms focus on rewriting solely
the pure quantum segments, there is interest in applying a global op-
timization process for applications such as quantum error correction
and quantum assertions. This work, based on the pure-quantum cir-
cuit optimization procedure by Duncan et al., uses an extension of the
formal graphical ZX-calculus called ZX = as an intermediary representa-
tion of the hybrid circuits to allow for granular optimizations below the
quantum-gate level. We define a translation from hybrid circuits into dia-
grams that admit the graph-theoretical focused-gFlow property, needed
for the final extraction back into a circuit. We then derive a number of
gFlow-preserving optimization rules for ZX_diagrams that reduce the
size of the graph, and devise a strategy to find optimization opportun-
ities by rewriting the diagram guided by a Gauss elimination process.
Then, after extracting the circuit, we present a general procedure for de-
tecting segments of circuit-like ZX + diagrams which can be implemented
with classical gates in the extracted circuit. We have implemented our
optimization procedure as an extension to the open-source python library
PyZX.
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1 Introduction

The description of quantum algorithms commonly involves quantum operations
interacting with classical data in its inputs, outputs, or intermediary steps via
measurements or state preparations. Some applications such as quantum error
correction [9, 2] and quantum assertions [I8] [25] explicitly introduce classical
measurements and logic between quantum computations. In general, quantum
programming languages usually allow for measurements and classically con-
trolled quantum operators mixed-in with unitary gates [111 [7, 15l 23]. Further-
more, Jozsa [14] conjectured that any polynomial-time quantum algorithm can
be simulated by polylogarithmic-depth quantum computation interleaved with
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polynomial-depth classical computation. As such, there is interest in contem-
plating this kind of structures in circuits.

A popular alternative representation of quantum circuit is based on the ZX-
caleulus [B], 6], a formal diagrammatic language which presents a more granular
representation of quantum circuits and has been successfully used in applications
such as MBQC [I0], quantum error correction [4], and quantum foundations.
Carette et al. [3] introduced an extension of the calculus called ZX .+ which allows
for the representation of operations interacting with the classical environment
by adding a discarding ground generator to the diagrams.

It is natural to look at the problem of optimizing algorithm implementations
by taking in consideration the environment in addition to the pure quantum
fragments. However, most common optimization strategies focus solely on the
latter without contemplating the hybrid quantum-classical structure [T}, 12]. One
of this pure optimizations introduced by Duncan et al. [§] uses the ZX-calculus to
apply granular rewriting rules that ignore the boundaries of each quantum gate.
We will refer to it as the Clifford optimization algorithm. Their rewriting steps
preserve a diagram property called gFlow admittance that is required for the
final extraction of the ZX diagrams into circuits. The ZX optimization method
was latter used by Kissinger and van de Wetering [I7] in their method to reduce
the number of T-gates in quantum circuits.

In this work we define the natural extension of the pure Clifford optimization
algorithm by Duncan et al. to hybrid quantum-classical circuits using the ZX =
calculus.

Our circuit optimization procedure forgets the difference between quantum
and classical wires during the simplification process, representing connections as
a single type of edge. This allows it to optimize the complete hybrid system as an
homogeneous diagram, and results in similar representations for operations that
can be done either quantumly or classically. Generally, in a physical quantum
computer, the classical operations are simpler to implement than their quantum
counterparts, and quantum simulators can exploit the knowledge of which wires
carry classical data to simplify their operation. As such, it is beneficial to extract
classical gates in the resulting circuit where possible.

The contribution of this paper are as follows.

— We specify a translation of hybrid circuits into ZX . diagrams in a special
graph like form that admits a gFlow, restricting the classical segments of the
input to parity circuits.

— We introduce a number of gFlow-preserving rewriting rules that interact
with the discarding generator to reduce the size of the diagrams, and devise
a strategy to find optimization opportunities using the biadjacency matrix
of the graph cut between spiders connected to ground generators and the
other nodes in the diagram.

— We define a procedure to extract ZX . diagrams with a gFlow back into hy-
brid quantum-classical circuits, including ancilla initialization and termina-
tion.
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— We define the problem of ZX_-classicalization as labelling segments of the
diagrams which can be implemented classically and present an heuristic solu-
tion. Our method can be applied on the extracted circuits to maximize the
number of classically implemented operations.

The paper is organized in the following manner. In Section 2| we define the
quantum circuits, present a syntactic description of the ZX . calculus and its
equation, and give an intuition behind the representation of hybrid quantum-
classical circuits. Section [3] then introduces the graph-like family of ZX. dia-
grams and defines the focused gFlow property over the graphs. We then define
the translation of quantum circuits into graph-like diagrams in Section [ In
Section [5| we introduce the optimization rules and our strategy for finding rule
matches which we use to describe the complete optimization algorithm. Then in
Section [6] we define the extraction algorithm and finally we present our classic-
alization procedure in Section [7] In Section [§] we discuss the results of testing
our procedure on randomly generated circuits.

2 Hybrid quantum-classical circuits and the grounded
ZX-calculus

In pure quantum operations, a single qubit quantum state is represented as a
unitary vector in the Hilbert space C2. We use Dirac notation to talk about
such vectors and denote an arbitrary state as |¢). States can be be described
as a linear combination of vectors in a basis such as the computational basis
{|0),|1)} or the diagonal basis {|+),|—)}, where |£) = %(|0> + [1)). A third,
less commonly used basis called Y is formed by the vectors |0) = %(|O> +1i|1))
and |O) = %(m) —1]1)). Qubit spaces can be composed using a tensor product,
and we denote |¢p) = |@) & [1).

Hybrid quantum-classical systems include classical data, which can be rep-
resented in a qubit space as orthonormal basis vectors (e.g. by representing a
logical 0 as the state |0) and a logical 1 as |1)), but additionally include a trace
or measurement operation, which probabilistically projects a qubit into a vector
in an orthogonal basis. The resulting probabilistic distribution of pure states is
called a mixed state, and is better represented by a density matriz, a positive
semi-definite Hermitian operator of trace one in the (C?*2)®" Hilbert space, for
an n-qubit system. Given a probabilistic distribution of pure states {(p;, |¢:))},
their density matrix is constructed as ), p; |¢i)(¢;|, where (¢| = )T

Quantum circuit diagrams consist of horizontal lines carrying each the in-
formation of one qubit, read from right to left, with some attached gates ap-
plying unitary transformations over the qubit states. We use the universal set
of operations {CNOT, X,,, Z4,H} for pure-quantum diagrams. When « is lim-
ited to multiples of 7 this roughly corresponds to the approximately universal
Clifford+T group. Some rotation gates have specific names, such as Z = Z,
X =X S=7%Zz, HSH = Xz, and T = Zz. We additionally include ancilla
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initialization and termination, and swaps. The representation of each mentioned
gate is reproduced here.

L i Az Axl o Ao 2

Hybrid circuits represent bit-carrying classical wires using doubled lines and ex-
tend the set of gates with some classical operations such as {NOT, XOR, AND},
classical fan-out, bit swaps, measurement, qubit preparation, and classically con-
trolled versions of the X, and Z, gates. We depict them respectively as follows.

== A = X == =+ O

Circuits are inductively constructed from these generators, wire identities, and
parallel and serial composition, ensuring that only wires of the same type connect
with each other.

In this work we restrict the input to circuits with classical parity logic, choos-
ing not to include AND gates due to the complexity of their representation as
ZX . diagrams, which might result in the introduction of additional non-Clifford
gates during the extraction procedure (refer to Section |§| for further discussion).

The ZX-calculus is a formal graphical language which provides a fine-grained
representation of quantum operations. We present a brief introduction to its
definition, including the ZX L extension to represent classical operations. Refer
to [24] for a complete description of both calculi.

7ZX diagrams representing pure-quantum linear maps are composed by wires,
spiders, and Hadamard boxes. We read the diagrams from right to left and
represent inputs and outputs as open-ended wires. The Hadamard box —a—
swaps the computational and diagonal basis, mapping |0) to |[+), |1) to |—) and
vice versa. The spiders are arbitrary-degree nodes labelled with a real phase
a € [0,27) that come in either green or red color, named Z- and X-spiders re-
spectively. When « is a multiple w or 5, we call them Pauli or Clifford-spiders
respectively. We refer to the set of spiders connected to outputs and inputs of
the diagram as O and | respectively, and call their members output- and input-
spiders.

A degree-2 green (resp. red) spider corresponds to applying a Z, (X,) op-
eration over a qubit. Phaseless spiders represents nodes with phase 0 and can
be interpreted as copying the computational basis vectors in the case of green
spiders, or the diagonal basis vectors for red spiders.

o [00) + B111) + |01 +6]10) SO a[000) + 5 [111)

Spiders of the same color can be fused together, adding their phases. It is im-
portant to note that the relative position of the nodes in ZX diagrams do not
alter their interpretation, as only the topology matters.
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The ZX-calculus comes equipped with a complete set of formal rewrite rules [13].
We reproduce it here ignoring scalars.

i1)

(
= 0= (h) —Oo0— = —
i (@tB) : () o= : .
o - (i2)
00 = —
DS G
o

The ZX . calculus [3] is an extension to the ZX-calculus which is able to
easily describe interactions with the environment. The diagrams have a standard
interpretation as completely positive linear maps between quantum mixed states
(cf. Appendix [A| for a formal description). In addition to the ZX generators and
rewrite rules, the calculus introduces a ground generator (=) which represent
the tracing operation, or the discarding of information. When connected to a
degree-3 green spider, this can correspond to a measurement operation over the

computational basis or a qubit initialization from a bit.

We refer to the spiders attached to <+ generators as = -spiders. Notice that we use
the same kind of wire for both classical and quantum data, since as previously
discussed we can encode the latter as the former. We will later introduce a
method to differentiate between the two types of wire by using the = -spiders in
Section [0

ZX . extends the set of rewriting rules with the following additions.

\H——O (i) :’7] \\F—{H (L) \\H \\H:}— (2) \\H ‘:ii: (g) ‘::

Intuitively, the — generator discards any operation applied over a single qubit.
Multiple discards can be combined into one vio the following rule, derived from

rules (m), (n), and (k).
::t__>Q— (g:g) —-0—

For simplicity in our diagrams, we replace solely as notation the Hadamard
boxes with “Hadamard wires” drawn in blue, as follows.

—OO— = —O—O—0—

We introduce two additional derived equations. One to erase duplicated
Hadamard wires, as proven by Duncan et al. [§], and another to discard them,
from a combination of rules (m) and (I).

D S-ChlED TGRS G- &
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We utilise -box notation [20] to represent infinite families of diagrams with
segments that can be repeated 0 or more times. In the following sections it will
be useful to use this notation for depicting more complex diagrams. Here we
present an example of its usage.

%ii € {—o, 0@y, w:::f o}

3 Graph-like diagrams and focused gFlow

A ZX diagram is said to be in graph-like form [8] when it contains only Z-
spiders connected by Hadamard wires, there are no parallel edges nor self-loops,
and no spider is connected to more than one input or output. We define the
graph-like form for ZX . diagrams and include a weaker version allowing a node
to connect to an input, a ground, and any number of outputs simultaneously.
When defining a translation from quantum circuits into ZX . diagrams it will
be simpler to initially generate weakly graph-like diagrams and transform the
final result into the strict version afterwards.

Definition 1. A ZXL diagram is graph-like (respectively weakly graph-like) when:

All spiders are Z-spiders.

Z-spiders are only connected via Hadamard edges.

There are no parallel Hadamard edges or self-loops.

There is no pair of connected + -spiders.

Every input, output, or = is connected to a Z-spider.

Every Z-spider connected to a + has phase 0.

Every Z-spider is connected to at most one input, one output, or one + (at
most one input and at most one + ).

RO Tt oo~

Proposition 1. Fvery ZXL diagram is equivalent to a weakly graph-like ZX L diagram.
Indeed, Duncan et al. [8] proved that any pure-ZX diagram is equivalent to a
graph-like one. The proof can be extended to weakly graph-like ZXL diagrams
simply by applying rule (1) to eliminate Hadamards connected to = generators,

rule (gg) to eliminate duplicated = connected to the same spider, and rule (n)

to disconnect wires between = -spiders.

Lemma 1. There exists an algorithm to transform an arbitrary ZX. diagram
into an equivalent strictly graph-like diagram.

Proof. By adding identity spiders to the inputs and outputs. Cf. Appendix

Once a diagram is in a weakly graph-like form, all its spiders as well as all
its internal connections are of the same kind. We can refer to its underlying
structure as a simple undirected graph, marking the nodes connected to inputs
and outputs. In addition, = generators or the = -spiders connected to them can
be seen as outputs discarding information into the environment. This is known
as the underlying open graph of a diagram.
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Definition 2. An open graph is a triple (G,S,T) where G = (V, E) is an un-
directed graph, and S CV is a set of sources and T CV is a set of sinks. For a
weakly graph-like ZX+ diagram D, the underlying open graph G(D) is the open
graph whose vertices are spiders D, whose edges correspond to Hadamard edges,
whose set S is the subset of spiders connected to the inputs of D, and whose set
T is the subset of spiders connected to the outputs of D or to ground generators.

The underlying open graph of a ZX diagram produced from our translation
of quantum circuits verify a graph-theoretic invariant called focused gFlow [19].
This structure —originally conceived for graph states in measurement based
quantum computation— gives a notion of flow of information and time on the
diagram. It will be required to guide the extraction strategy in Section [6]

Definition 3. Given an open graph G, a focused gFlow (g, <) on G consists of
a function g : T — 25 and a partial order < on the vertices V. of G such that
for allu € T, Oddg(g(u)) NT = {u} and Vv € g(u),u < v where 2° is the
powerset of S and Oddg(A) == {v € V(G) | |IN(v) N A| = 1 mod 2} is the odd
neighbourhood of A.

4 Translation of hybrid quantum-classical circuits

We describe our translation from hybrid quantum-classical circuits into strictly
graph-like ZX L diagrams by steps. First, we translate each individual gate dir-
ectly into a weakly graph-like diagram and connect them with regular wires. We
define this translation T'(-) by inductively translating the gates as described in
Table |1 immediately followed by the application of the spider fusion rule (f)
and rules (gg) and (fh) to remove all regular wires, duplicated + generators,
and parallel Hadamard wires, ensuring that the final combined diagram is in a
weakly graph-like form. An example of this translation is shown in Figure

Notice that the translation maps both classical and quantum wires to regular
ZX Ldiagram edges. We keep track of which inputs and outputs of the diagram
were connected to classical wires and introduce + generators for the operations
that interact with the environment. In Section [6] we present a method to detect
the sections of the final circuit that can be implemented as classical operations
by looking at the classical inputs/outputs and the — generators, independently
of which wires where originally classical.

Lemma 2. The ZXL diagram resulting from the translation T'(-) is weakly graph-
like.

Proof. By induction on the circuit construction. Cf. Appendix

After the translation, we can apply Lemma [I] to obtain a strictly graph-like
diagram. This step essentially separates the = generators from the inputs and
outputs, allowing the optimization procedure to move them around and let them
interact with other parts of the diagram.
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Table 1: Translation from hybrid quantum-classical circuits into ZX diagrams.
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Figure1l: Example translation of the superdense coding circuit into a
ZX rdiagram with labelled inputs and outputs, and subsequent application of
the spider-fusion rule.

Lemma 3. If C is a hybrid quantum-classical circuit and D is the graph-like
ZX+ diagram obtained from the translation T(C) and Lemmali] then G(D) ad-
mits a focused gFlow.

Proof. By induction on C. Cf. Appendix [B]

5 Grounded ZX optimization

Our simplification strategy for ZX. diagrams is based on eliminating nodes
from the diagram by systematically applying a number of rewriting rules while
preserving the existence of a focused gFlow. In this section we introduce the
new rules, define a strategy to maximize their effectiveness, and finally use it
together with the pure-ZX optimization to define our algorithm.
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5.1 Basic simplification rules

Duncan et al. [8] presented the following gFlow-preserving local complementation
and pivoting rules for the ZX calculus in their optimization procedure. These
rules effectively reduce the size of the diagram by at least one node on each
application by eliminating internal proper-Clifford spiders and Pauli spider pairs
respectively.

These rules can be applied directly in ZX . diagrams when the target spiders
are not connected to a =+ generator. For the cases where some of the target
spiders are + -spiders, we introduce the following altered rules. Their derivation
can be found in Appendix [C]

Notice that both rules (LC=) and (p~) do not decrease the number of spiders
in the diagram. As such, we will focus on rule (pp~) for our optimization.

If (pp™) is applied with a non-+ spider connected to a boundary, the rule
produces a =+ -spider connected to an input or output thus needing to add an
identity operation as described in Lemma|[l| to preserve the graph-like property.
Since in this case we add additional nodes to the graph, we will only apply rule
(pp™)on a boundary spider if it can be followed by another node-removing rule.

Additionally, we will use rules (ml) and (k) directly to remove nodes in the
diagram when there are - -spiders with degree 1 or 0 in the graph, respectively.

Lemma 4. If the non-+ spider in the lhs of the discarding rule (ml) is not
connected to an output or input, then applying the rule over a graph-like diagram
D preserves the existence of a focused gFlow.

Proof. If the non-+ spider in the lhs is not connected to an input or output
of the diagram, then applying the rule does not break the graph-like property
of D. The preservation of the gFlow follows from = -spiders being sinks of the
underlying open graph.
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Lemma 5. Rules (LC~), (p=), and (pp~) preserve the existence of a focused
gFlow.

Proof. Notice that that rules (LC~¥), (p~), and (pp=) are compositions of
gFlow-preserving rules.

5.2 Ground-cut simplification

The previously introduced rewriting rules require a simplification strategy to
apply them. A simple solution is to try to find a match for each rule and apply
them iteratively until no more matches are available. We describe a strategy
that can find additional rule matches by operating on the biadjacency matrix
between the + -spiders and the non-+ spiders.

Definition 4. The ground-cut of a graph-like ZX diagram D 1is the cut resulting
from splitting the = and non-+ spiders in G(D).

Since the diagram is graph-like, there are no internal wires in the = partition.
Given a ZX.diagram D, we denote Mp the biadjacency matrix of its ground-
cut, where rows correspond to = -spiders and columns correspond to non-+
spiders. We can apply all elementary row operations on the matrix by rewriting
the diagram. The addition operation between the rows corresponding to the =
-spider v and the =+ -spider v can be implemented via the following rule, the
derivation of which can be found in Appendix [C]

Using the elementary row operations we can apply Gaussian elimination on
the ground-cut biadjacency matrix of a graph-like ZX . diagram, generating in
the process an equivalent diagram whose ground-cut biadjacency matrix is in
reduced echelon form.

Any row in the ground-cut biadjacency matrix left without non-zero elements
after applying Gaussian elimination corresponds to an isolated = -spiders in the
diagram that can be eliminated by rule (k). If the reduced row echelon form of
the biadjacency matrix contains a row with exactly one non-zero elements, then
that element corresponds to an isolated < -spider and non--+ spider pair in the
diagram and therefore we can apply rule (ml) to remove the non-+ spider.

5.3 The Algorithm

Based on the previous strategy, we define a terminating procedure which turns
any graph-like ZX _diagram into an equivalent simplified diagram that cannot
be further reduced.

Definition 5. A graph-like ZX L diagram is in simplified-form if it does not con-
tain any of the following, up to single-qubit unitaries on the inputs and outputs.
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(a) Diagram not in simplified-form (b) Diagram in simplified-form

Figure 2: Example of simplified and non-simplified diagrams.

Interior proper Clifford spiders.

Adjacent pairs of interior Pauli spiders.

Interior Pauli spiders adjacent to boundary spiders.

Interior Pauli spiders adjacent to = -spiders.

— Degree-1 = -spiders not connected to input or output spiders.
— Connected components not containing inputs nor outputs.

An example of diagrams satisfying and not satisfying this property is shown in
Figure 2]

We define an optimization algorithm that produces diagrams in simplified-
form by piggybacking on the pure optimization procedure. This optimization
applies the local complementations (LC') and pivoting (p) rules until there are no
interior proper Clifford spiders or adjacent pairs of non-+ interior Pauli spiders.
After the initial pure simplification, we continue our optimization as follows.

1. Repeat until no rule matches, removing wires between = -spiders and parallel
Hadamard connections after each step:

(a) Run Gaussian elimination on the ground-cut of the diagram as described
in Section

(b) Remove the grounds corresponding to null rows with rule (k).

(c) If any row of the biadjacency matrix has a single non-zero element, cor-
responding to a + -spider connected to a spider v, then:

i. If v is not a boundary spider, apply rule (ml).

ii. If v is a boundary spider and v is adjacent to a Pauli spider, apply
rule (ml) immediately followed by the procedure from Lemma (1| to
make the diagram graph-like again. Then delete the Pauli neighbour
using rule (pp~), to ensure that the step removes at least one node.

(d) Apply Pauli spider elimination rule (pp=) until there are no Pauli spiders
connected to ground spiders.

2. Remove any connected component of the graph without inputs or outputs.

Notice that each cycle the loop reduces the number of nodes in the graph, so
this is a terminating procedure. Additionally, since each applied rule preserves
the existence of a gFlow the final diagram admits a gFlow. An example run of
the algorithm is shown in Figure [3]
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Figure 3: Example of a diagram optimization applying a ground-cut simplifica-
tion, a discard rule, and a Pauli elimination.

6 Circuit extraction

Here we describe a general circuit extraction procedure for graph-like ZX L diagrams
admitting a focused gFlow into hybrid quantum-classical circuits, by modifying
the procedure for pure diagrams from the Clifford optimization. We present the
pseudocode in Algorithm [1] and an example of an execution in Appendix

The algorithm progresses through the diagram from right-to-left, maintaining
a set of spiders F, called the frontier, which represents the unextracted spiders
connected to the extracted segment. Each frontier spider is assigned an output
qubit line Q(v). This set is initially populated by the nodes connected to outputs
of the diagram. The strategy is to proceed backwards by steps, adding unextrac-
ted spiders into the frontier and deleting some of them to extract operations on
the output circuit, in back-to-front order.

To find candidate spiders to add to the frontier we apply Gaussian elimination
on the biadjacency matrix of the frontier and non-frontier spiders, similarly to
the optimization method described in Section [5.2] The gFlow property of the
graph ensures that we can always progress by extracting a node. It suffices to
look at the set of non-frontier vertices maximal in the order and notice that, after
the Gauss elimination, either we can choose a = -spider from the set, or a non-+
spider that has a single connection to the frontier. A careful implementation
of the biadjacency matrix row and column ordering can reduce the number of
+ -spider extractions when no non-+ candidates are available. We require the
following proposition to apply the row additions on the graph (Duncan et al. [§],
Proposition 7.1).

Proposition 2. For any ZX. diagram D, the following equation holds:

o T 00 of ot spgo

| D[Ou: 00 = i | p Lot

—0O- _(')/’ R —O-- _('j»,’/ Y .
w_/ w_/
M M’

where M describes the biadjacency matrixz of the relevant vertices, and M’ is the
matriz produced by adding row 2 to row 1 in M. Furthermore, if the diagram on
the LHS has a focused gFlow, then so does the RHS.
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Algorithm 1 Circuit extraction

1: function EXTRACTION

2 F: Set(Node) < O, Q : Map(Node,int) + 0

3 for all v € F do Q(v) + Output connected to v

4: CLEANFRONTIER(F, Q)

5: while F # 0 do

6 Run Gauss elimination on the frontier biadjacency matrix M (Proposition
7 if a row of M has a single non-zero element then

8 Let u and v be the corresponding non-frontier and frontier node

9: Q(u) « Q(v)

10: Remove v from the diagram and add u to F

11: else

12: v <— Arbitrary = -spider in the neighbourhood of F

13: Q(v) < New qubit line id

14: Extract a classical bit termination on Q(v) and add u to F

15: CLEANFRONTIER(F, Q)

16: for all Unextracted v € I do

17: Q(v) < Input connected to v

18: Extract a measurement gate and a classical bit termination on Q(v)
19: Assign the corresponding input to Q(v)

20: function CLEANFRONTIER(F, Q)
21: for all v € F do

22: if v is a = -spider then Remove the = , extract a measurement on Q(v)
23: if v has a phase a # 0 then Set a = 0, extract a Z, gate on Q(v)

24: for all u € F,v ~ u do Remove the wire, extract a CZ gate on Q(v), Q(u)
25: if v is not connected to any other node then

26: Remove v

27: if v € | then assign the input to qubit Q

28: else extract a |[+) qubit initialization on Q(v)

In our pseudocode, the call to CLEANFRONTIER ensures that F only contains
phaseless spiders without internal wires. Notice that it preserves the gFlow since
it only modifies edges between sink nodes, and removes spiders with no other
connections. After the while loop terminates, all outputs of the circuit will have
been extracted. If there are inputs left unextracted, and since the diagram had
a gFlow, we can discard them directly via measurement operations.

Finally, we add any necessary swap operations to map the inputs to the
correct lines, and insert qubit initializations and measurements at inputs and
outputs marked as classical. In Section [7] we detail a method to better detect
the internal parts of the circuit that can be implemented classically.

In any case, each step of the while loop in Algorithm [T line 5] preserves the
gFlow of the diagram, and we can show that it terminates in at most |V| steps:
Indeed, if there are no non-frontier spiders, then a call to CLEANFRONTIER will
remove all nodes from the frontier. Moreover, each step of the while loop in line[j]
moves one non-frontier spider to F.
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7 Circuit classicalization

The extraction procedure described in Section[6]produces correct circuits that are
almost completely composed by quantum gates and wires, without any classical
operation. In this section we describe the general problem of detecting parts of
the circuits that can be realized as classical operations, and introduce an efficient
heuristic solution based on a local-search. Notice, however, that while we aim
to recognize all classically realizable operations in the circuit the characteristics
of each quantum computer may dictate the final choice between quantum and
classical operators by taking into account the costs of exchanging data between
both realms.

Given a ZX..diagram, we decorate its wires using the set of labels £ =
{Q,X,Y,Z, L}. The label Z means that this particular wire can be replaced
by a classical wire (possibly precomposed with a standard basis measurement
and postcomposed by a qubit initialisation in the standard basis depending on
whether the connected wires are also classical or not), and similarly for X and Y
by adapting the basis of measurement/initialisation to the diagonal or Y basis.
Q means that the wire is a quantum wire, and finally | means that the wire
can be removed by precomposing with a = and postcomposing with a maximally
mixed state. The set of labels form a partial order, Q > X,Y,Z > L.

A labelling L of a diagram D is a map from its edges into a pair of labels. The
two labels, drawn at each end of the wire, indicate the origin of the constraint.
Intuitively, Z__2 means that the wire is produced in such a way that guarantees
that the qubit carries classical information encoded in the computational basis,
whereas =— means that the wire can be replaced by a classical wire because
some process will force this qubit to be in that basis —for instance, it is going
to be measured in the standard basis and thus one can already measure this
qubit in the standard basis and use a classical wire—. We define a partial order
between labellings of a diagram as the natural lift from the partial order of the
labels.

Each label corresponds to a density matrix subspace of C2*2, representing
all possible mixed states allowed by that particular kind of wire.

Q=C> Z = {a|0)0] + B10X0[ | o, B € Rxp,a+ 8 =1}
L={510)0[+ 3111} X ={a|+)X+|+B]-X-||a,B € Rzp,a + =1}
Y = {a|OXOl+ B1OXO| | o, B € R, + 5 =1}

Notice that the greatest common ancestor Al B corresponds to the intersection
of the sets.

Intuitively, a labelling is valid if we can cut any wire in the diagram and,
after forcing a valid state in the inputs and outputs, we get a valid state in the
cut terminals. That is, we rearrange the diagram to transform all outputs into
inputs and connect the cut terminals as outputs, as shown on the right. Then,
applying an arbitrary input p € (Q); 4;) ® (®§” D;) to the diagrams produces
aresult in £ ® F.
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Notice that if A is a valid label for a “_f ( f

wire then any B > A is also valid, and 41 5: E__F C1 Dy

in particular Q is always a valid label. We : D :

can then omit unnecessary labels in the dia- 4n 4»

grams, marking them implicitly as Q.
Given a ZX.diagram D with marked

classical inputs and outputs, we define the

classicalization problem as finding a minimal
valid labeling where the inputs and outputs are labelled as Q or Z accordingly.

7.1 Local-search algorithm

We present a local-search labelling procedure for ZX. diagrams with explicit
Hadamard gates —replacing the Hadamard wires— and only green spiders, that
produces locally minimal labellings by propagating the labels over individual
spiders. A diagram resulting from the circuit extraction in Section [6] can be
transformed to have only green spiders by applying the color-change rule (h).
This restriction is purely for simplicity in our definition, as the equivalent func-
tions can be defined easily for red spiders.

We introduce a number of operations over the labels. First, a binary function
representing the result of combining two wires via a phaseless green spider,
*: LX L — L.

ZxA=7 XxA=A YxY=X QxY=Q 1LxY=_1
AxZ =7 AxX=4 Y+«Q=Q QxQ=Q 1xQ=7Z
Yxl=1 Qxl=7Z 1xl=_1

Notice that (£,«) is a commutative monoid with X as neutral element. We also
define a “Z rotation” operation for « € [0, 27), rot, : £ — L.

roto(Z2) =7 rot,(Q) = Q rote (L) =1
X ifae{0,n} Y ifae{0,n}
roto(X) =Y ifae {ir 3n} roto(Y) =4 X ifae {ir 2n}
Q otherwise Q otherwise

This corresponds to the identity if @ € {0,7}, and in general rot,(A) x b >
rote (A B).

Finally, we define a function H representing the application of the Hadamard
operation over a label, H: £ — L.

HQ=Q HX)=Z HZ)=X HY) =Y HLl)=1

Our classical detection procedure starts by labelling any classical input or
output with a Z label, and any = with a L label, and the rest of the diagram
wires with Q.

It then proceeds by propagating the labels using the following rules:

A C B bp (ch) a cuH(D) BUH(A) D
Y o
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For any labels A, B,C,D,E, F € L.

We apply these rules until there are no more labels to change. Since each
time we replace labels with lesser ones in the order, the procedure terminates.
Finally, we can interpret wires with a classical label in any direction as classically
realisable. We show an example of a labeled diagram in Figure [4]

I. . chXZ xxxzc

~

q O q

Figure4: Example of a local-search classicalization. Q labels are omitted.

Lemma 6. The local-search labelling algorithm produces a valid labeling accord-
ing to the standard interpretation of the ZXL calculus.

Proof. By proving that both rules (ch) and (ez) produce valid labellings, cf.
Appendix [B]

Remark 1. The local-search labelling does not always reach a globally minimum
labeling. Consider for example the following input diagram.

Z Q

e b

Here, although the diagram is equivalent to the identity and the outputs could
theoretically be labelled as Z, the entangled wires in the middle do not allow for
local propagation of the classical labels past the double controlled Z gates.

8 Implementation

We have implemented each of the algorithms presented in this work as an exten-
sion to the open source Python library PyZX [16] by modifying its implement-
ation of ZX diagrams to admit ZX . primitives. A repository with the code is
available at |http://github.com/aborgna/pyzx/tree/zxgnd. We additionally im-
plemented a naive ZX_ extension of the pure Clifford optimization for compar-
ison purposes, which doesn’t use any of our = rewriting rules. When applied to
pure quantum circuits, our algorithm does not perform additional optimizations
after the Clifford procedure and therefore achieves the same benchmark results
recorded by Duncan et al. on the circuit set described by Amy et al. [I].

We tested the procedure over two classes of randomly generated circuits, and
measured the size of the resulting diagram as the number of spiders left after the


http://github.com/aborgna/pyzx/tree/zxgnd

Hybrid quantum-classical circuit simplification with the ZX-calculus 17

optimization. This metric correlates with the size of the final circuit, although
the algorithmic noise caused by the arbitrary choices in the extraction procedure
may result in some cases in bigger extracted circuit after a reduction step.

The first test generates Clifford+T circuits with measurements by applying
randomly chosen gates from the set {CNOT, S, HSH, T, Meas} over a fixed
number of qubits, where Meas are measurement gates on a qubit immediately
followed by a qubit initialization. We fix the probability of choosing a CNOT,
S, or HSH gate to 0.2 each and vary the probabilities for T and Meas in the
remaining 0.4. These circuits present a general worst case, where there is no
additional classical structure to exploit during the hybrid circuit optimization.

The second type of generated operations are classical parity-logic circuits.
These consist on a number of classical inputs, fixed at 10, where we apply ran-
domly chosen operations from the set {NOT, XOR, Fanout} with probabilities
0.3, 0.3, and 0.4 respectively.

In Figure [f] we compare the results of our optimization using the Clifford
optimization as baseline. Figure shows the reduction of diagram size when
running the algorithm on randomly generated Clifford+T circuits with meas-
urement. We vary the probability of generating a measurement gate between 0
and 0.2 while correspondingly changing the probability of generating a T-gate
between 0.4 and 0.2, and show the results for different combinations of qubit and
gate quantities. We remark that the optimization produces noticeably smaller
diagrams once enough = generators start interacting with each other. There is a
critical threshold of measurement gate probability, specially visible in the cases
with 8 qubits and 1024 gates, where with high probability the outputs of the
diagram become disconnected from the inputs due to the = interactions. This
results in our algorithm optimizing the circuits to produce a constant result
while discarding their input.

Figure [5b| shows the comparison of diagram size between our procedure and
the Clifford optimization when run over classical parity circuits. The optimiza-
tion produces consistently smaller diagrams, generally achieving the theoretical
minimal number of = generators, equal to the number of inputs. We further
remark that in all of the tested cases the classicalization procedure was able
to detect that all the extracted operations on the optimized parity-logic circuit
were classically realisable.

The runtime of our algorithm implementation is polynomial in the size of the
circuit. As with the Clifford optimization, the cost of our optimization and ex-
traction processes is dominated by the Gauss elimination steps. For the ground-
node rewriting rules, our unoptimized implementation is roughly O(n? * k?) in
the worst case with k& being the number of measurement gates and n the number
of gates, but in practice it behaves cubically on the number of gates due to the
sparseness of the diagrams. The implementation was not developed with a focus
on the runtime cost, and some possible optimizations may reduce this bound.
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(a) Diagram size reduction on Clifford4+T (b) Diagram size reduction on parity-logic
circuits with measurements. circuits.

Figure 5: Benchmark results on randomly generated diagrams.

9 Discussion and future work

We introduced an optimization procedure for optimizing hybrid classical circuits
inspired by previous work on pure circuit optimization using the ZX calculus.
The process is composed by a translation step, the optimization of the diagrams,
an extraction back into circuits and finally a detection of classically-realisable
operations. Our translation operation produces diagrams which admit a focused
gFlow, a property that we maintain during the optimization and require during
the extraction. For our optimization step we defined a series of rewrite strategies
to reduce the size of the diagrams, and introduced a strategy to find additional
optimization opportunities by applying Gaussian elimination on the biadjacency
matrix of the ground-cut of the diagram. Our extraction procedure initially gen-
erates circuits without classical operations. Hence, we introduced a classicaliz-
ation heuristic for arbitrary circuits that is able to replace quantum operations
by their classical equivalent, where possible.

Kissinger and van de Wetering [17] defined a procedure based on the Clifford
optimization to reduce the T-gate count in quantum circuits by defining new
structures in the graphs called phase gadgets and operating over their phases.
Their work can be easily extended to ZX.., where the - generators act as an
absorbing element for the gadgets phases. However, rules such as (+) prove to
be strictly more powerful than applying the pure phase gadget rules over = -
gadgets. In general, the phase-gadget optimization affects an independent section
of the structure of the diagram compared to ours, and can be applied with it.

During our definition of the optimization process we decided to restrict the
input circuits to parity classical logic, excluding AND and OR gates. This does
not raise from an inherent limitation of the system but from a practical stand-
point. The ZX L calculus is able to represent AND operations in what equates to
the Clifford4+T decomposition of the Toffoli gate, introducing multiple T-gates
and CNOT gates to the circuit [22]. The multiple spiders would be dispersed
around the diagram during the optimization step, potentially breaking the pat-
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tern formed by the AND gate and replacing it with multiple quantum operations.
This can produce the unexpected result of introducing expensive quantum op-
erations in an originally pure classical circuit. A possible next step for this work
would be to use an alternative diagrammatic representation better adapted to
represent arbitrary boolean circuit such as the ZH calculus.
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A Semantics of the ZX-ground calculus

Carette et al. [3] define an interpretation of ZX. diagrams using a CPM con-
struction (cf. Reference [21]). We describe it here without the categorical lan-
guage, as an interpretation of diagrams into density matrices and completely
positive maps modulo scalars.

Let D,, € C2"*2" be the set of n-qubit density matrices. There exist a functor
[] : ZX+ — CPM(Qubit) which associates to any diagram D : n — m a
completely positive map [D] : D,, — Dy, inductively defined as follows.

[D1® Do] := [D1] ® [D2] [D2o Di] := [D2] o [Di] H[:]ﬂ = (1) [@] = (1+e*)
[——] = id |[><]] = p> U p U where U=|00Y00|-+[01(10]+10(01|+|11)11]|

1 /11
— T —
[=—] =p—HpH WhereH—\/i(11>

[0 = [0X0[ + 11| [—#] := p={0[p]0) + (1] p[1)

ﬂn>ﬂ<mﬂ = p— A P AT if n +m > 0, where A:\OmX0"|+em|1mX1"\
Iln>1<mﬂ = [[+]]®m o Iln)@b(mﬂ 5 [[+]}®"

From the compositional rules, we can see that a ground attached to a green
spider corresponds to a measurement over the computational basis.

){m = P [07NO7 p 070"+ 1AM p

It follows from rule (h) that the red = -spider corresponds to a measurement
over the diagonal basis:

n>§<m = [FXE KT A =T e [

Notice that, in accordance to rule (m), the phase of a + -spider is irrelevant.

B Extended proofs

B.1 Proofs of section [3]

Lemma ([1)). There exists an algorithm to transform an arbitrary ZX. diagram
into an equivalent strictly graph-like diagram.
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Proof. The strict graph-like condition limits to 1 the number of input, output,
and ground generators connected to each spider, in addition to the weakly graph-
like restrictions. By Proposition (1} the diagram can be rewritten into an equi-
valent weakly graph-like diagram D. We describe an algorithm which modifies
D to comply with the additional restriction.

For each spider v in D connected to at least two inputs, outputs or + gen-
erators, add two Z-spiders and Hadamard wires to each connected input and
output as follows.

| |
1 Ving Ving v \}UOUti,l Vout;,z |

Notice that v may have at most one connected input. The introduced spiders cor-
respond to identity operations, and therefore the procedure generates a strictly
graph-like diagram equivalent to D.

B.2 Proofs of section [

Lemma . The ZX.-diagram resulting from the translation T(-) is weakly
graph-like.

Proof. Notice that all the translation rules aside from the serial composition
generate weakly graph-like diagrams trivially.

For the serial composition, notice that both T'(C') and T(C") are weakly
graph-like by the induction hypothesis and therefore all spiders in the resulting
diagram are Z-spiders, all inputs and outputs are connected to Z-spiders, no
two inputs are connected to the same spider, and all spiders connected to =
-generators have phase 0. The internal edges added by the composition will
therefore connect two green spiders, which will be merged by the fusion rule
application.

The fusion step may create spiders connected to two ground generators, one
of which is removed by the application of rule (gg). It may also generate parallel
Hadamard wires, which are removed by the application of rule (fh).

Therefore, the translation generates weakly graph-like ZX .-diagrams.

For the proof of Lemma (3] we use a weaker version of the focused gFlow
invariant called causal flow [19].

Definition 6. Given an open graph G, a causal flow (f,<) on G consists of a
function f: T — S and a partial order < on the set V satisfying the following
properties:

1. f(v) ~wv
2. v =< fv)
3 Ifu~ f(v) and u #£ v then v < u
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where u ~ v if u is connected to v in the graph, and A = V(G)/A.
Duncan et al. [8, Theorem B.3] prove the following lemma relating both flow
properties:

Proposition 3. If G admits a causal flow, then there exists a wvalid focused
gFlow for G.

Lemma 7. If D is a weakly graph-like ZX L diagram and G(D) admits a causal
flow, the strictly graph-like diagram generated by the algorithm described in
Lemma[1] admits a causal flow.

Proof. Let (fp,<p) be a valid causal flow for D and let D’ be the resulting
diagram after applying rule [1| over a node v. We construct a causal flow for D’
by defining a function fps and relation <p/ as the minimal objects such that

— fpr 2 fp and <p/2<p.

— If v is connected to an input in D, fp/(Vin,) = Viny, fp'(Vin,) = v, and
(Viny s Ving )5 (Viny, v) €<pr.

— If v is connected to at least one output in D and v is not a =+ -spider,
for (U) = Voutq 1+

— For each output i connected to v in D, (v, Vout, , ), (Vout, 1 > Vout, ,) €<pr and
fD’(Uoutivl) = Uouti,y

Notice that (fpr, <},) is a valid focused flow for D', where <7, is the transitive
closure of <p. Since the rulel[l] preserves the focused flow, the resulting diagram
after successive application admits a causal flow.

Lemma . If C is a hybrid quantum-classical circuit and D is the graph-
like ZX+-diagram obtained from the translation T(C) and Lemmal[l], then G(D)
admits a focused gFlow.

Proof. By Proposition [3] it suffices to prove that G(D) admits a causal flow. We
proceed by induction on the construction of C'.

— Notice that the translation of each base constructors cannot be further sim-
plified by rules (f), (gg), or (fh), and the underlying open graph trivially
admits a causal flow.

— IfC = C1®Cs, let D; = T(C;). Since the two circuits are not connected after
the composition, they do not interact via the rules (f), (gg), or (fh), and
therefore D = D1 ® D5. By the induction hypothesis G(D;) and G(D3) admit
some causal flow (f1,<1) and (fz2, <2) respectively. Then, (f1 U f2, <1 U <2)
is a causal flow for G(D).

—If C =C; ®Cy, let D; = T(C;). By the induction hypothesis G(D;) and
G(D3) admit some causal flow (f1, <1) and (f2, <2) respectively. Notice that
rule (f) will be applied between each output of C; and the connected inputs
in Cy. Let f{ be a function and <} a relation such that for each vertex v
in G(Dy) and corresponding non-empty set of inputs {uy,...,ux} in G(D2),
Vo'st. f1(v') = v, fi(v") = uy and Vo'st. v’ < v, {(v/,u;)}E; C<}. Notice
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that since Dy is weakly graph-like, u; has exactly one corresponding sink
node in G(Dp). Additionally, for all vy, ve non-output nodes in G(D;) let
fi(v1) = v if fi(v1) = ve and let vy <} vg if v1 <1 vo. Then, (f] U fo, (<]
U <2)™) is a causal flow for G(D).

Then, by Lemma , the application of LemmalI| preserves the existence of a causal
flow.

B.3 Proofs of section

Lemma (??). Each step of the while loop in Algom'thm lme@ preserves the
gFlow of the diagram.

Proof. By Proposition [2] the Gauss elimination application preserves the gFlow.
Then, look at the set of non-frontier spiders maximal in the gFlow order.

If the set contains a non-= spider u then by definition g(u) € F. If Oddg(g(u))
does not contain = nodes, after the Gauss elimination there must be a frontier
spider v such that it is only connected to u. Therefore, removing v and making
u a sink of the diagram does not break the gFlow.

On the other case, since + -spiders are always sinks of the diagram promoting
them to the frontier does not modify the gFlow of the diagram.

Finally, the call to CLEANFRONTIER does not modify the gFlow.

B.4 Proofs of Section

For the following proofs we use the interpretation of ZX_. diagrams defined in
Appendix [A]

Lemma 8. The labelling rule (ch) preserves the validity of the labelling.

Proof. We prove the validity of the replacement of label B. The replacement of
label C' is the symmetric case.

Since the starting diagram has a valid labelling, B LIH(A) is a valid label if
H(A) is a valid label. Therefore the label is valid if Vp € A® D,

I]A;DKSH opeH(A)®D

D

Notice that this is equivalent to requiring Va € A, (HaH') € H(A), which follows
from the definition of H(:).

Lemma 9. The labelling rule (cz) preserves the validity of the labelling.
Proof. By induction on the number of wires.

— If n =0, there are no labelled wires.
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— If n = 1, since the starting diagram has a valid labelling, By U rot,(X) is a
valid labelling if rot,(X) is valid. Notice that

—ix

(@1 = (")) rotat

— If n = 2, we prove the validity of the replacement of label By. The replace-
ment of label B is the symmetric case.
Since the starting diagram has a valid labelling, BsUrot, (A1) is a valid label
if rot, (A1) is a valid label. Therefore the label is valid if Vp € A; ® By,

rotq (A1)

Mg op€eroty(4A1)® D

B1

Notice that this is equivalent to requiring Ya € Ay, (U aUT) € rot, (A1) for
U = |0)0] + e** |1)(1], which follows from the definition of rotq(-).

— If n = 3, we prove the validity of the replacement of label B;. The replace-
ment of labels By and B3 are the symmetric case.
Since the starting diagram has a valid labelling, By Urot, (A2 * A3) is a valid
label if rot, (As x A3) is a valid label. We can split the diagram as follows,
adding an intermediary label.

A2 A2

roto (Ag * Ag) ) Ag x Ag roto (Ag * Ag)
et O, @
Ag Ag

Notice that by the inductive hypothesis, the labelling step for the degree-2
spider is correct. Therefore it suffices to prove that the intermediary label
Ag x Ag is valid, that is Vp € Ax x A3 ® Q,

Az Ag x Ag

MS op€ (A *xA3)®Q

Q

Notice that this is equivalent to requiring Vas € As,az € Az, (U (a2 ®
az) U') € Ay x Az for U = |0X00] + [1)(11], which follows from the definition
of *.

— If n > 3, for each i and for some k # ¢ we can rewrite the diagram as follows,
and apply (cz) twice to produce the target B; Lirot, (¥ 2 A;) label.

By U rota(*j#iAj) Ap

By inductive hypothesis, both rule applications produce valid labellings.
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Lemma @ The local-search labelling algorithm produces a valid labeling ac-
cording to the standard interpretation of the ZXL calculus.

Proof. Notice that labelling every wire as Q is always valid and hence the al-
gorithm starts with a valid labelling. By Lemmas [§] and [9] each step applying
rules (ez) and (ch) preserve the validity and therefore the final labelling is valid.

C Rule derivations

Here we present the derivation of rules presented in Section

— Rule (LC™):

(LO) @t3)

’.cw— ..
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D Extraction examples

We show here an example of running the extraction procedure on a diagram.
The frontier set is demarcated with a dashed red box, and the extracted circuit
is represented with their ZX equivalent directly connected to the right of the
frontier.

We start with the frontier initialized as the output vertices, and directly
extract any = .

----- al T Qi
g Clean g

frontier

During each step of the algorithm, a maximal non-extracted element in the
gFlow order is chosen. Candidates can be chosen efficiently without calculating
the gFlow by running Gauss elimination on the biadjacency matrix between the
border and the non-extracted spiders, and mirroring the row-sum operations
using a gFlow preserving rewrite rule on the diagram.

Extract

e

Now, there are no candidate frontier spiders connected to a single unextracted
spider. We must therefore extract one of the connected <+ -spiders as a qubit
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termination.

Ezxtract
=

— —(O1

Ezxtract
—_—

If after any step there are nodes in the frontier that are not connected to any
internal spider then they can be removed from the frontier and extracted as a
qubit initialization, as show in the following example.
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