Skip to main content

Research on Foot Slippage Estimation of Mammal Type Legged Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13016))

Included in the following conference series:

  • 3764 Accesses

Abstract

The accurate of the velocity and posture data of legged robot such as hexapod and quadruped robots can not be obtained by body sensors only due to the influence of the sensor error itself and the installation error, as well as the foot slippage or mechanical error during the foot-terrain interaction. In this paper, the data fusion method based on Extended Kalman Filter (EKF) is adopted, and the data of accurate velocity and posture of trunk body are from the kinematics and IMU information. The single leg foot-terrain slippage model for mammal type legged robot based on leg dynamics model is proposed. The single leg foot-terrain slippage estimation method is presented. The method can detect the slippage rate of the single leg and the state of the slippage can be determined. The estimated value is compared with data obtained by the motion capture system (Mocap system), and the experimental results have demonstrated the effectiveness of the proposed method and realize the single leg slippage estimation of mammal type hexapod and quadruped robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lijn, D., Lopes, G.A.R.: Motion estimation based on predator/prey vision. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3435–3440 (2010)

    Google Scholar 

  2. Ma, J.S.: Robust multi-sensor, day/night 6-DOF pose estimation for a dynamic legged vehicle in GPS-denied environments. In: IEEE/RSJ International Conference on Robotics and Automation (ICRA), pp. 619–626 (2012)

    Google Scholar 

  3. Stelzer, A., Heiko, H., Martin, G.: Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. Int. J. Robot. Res. 31(4), 391–402 (2012)

    Article  Google Scholar 

  4. Roston, G.P., Krotkov, E.P.: Dead reckoning navigation for walking robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 607–612 (1991)

    Google Scholar 

  5. Lin, P.C., Komsuoglu, H., Koditschek, D.E.: A leg con-figuration measurement system for full-body pose estimates in a hexapod robot. IEEE Trans. Rob. 21(3), 411–422 (2005)

    Article  Google Scholar 

  6. Lin, P.C., Komsuoglu, H.: Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits. IEEE Trans. Rob. 22(5), 932–943 (2006)

    Article  Google Scholar 

  7. Chitta, S., Vemaza, P.: Proprioceptive localization for a quadrupedal robot on known terrain. In: IEEE/RSJ International Conference on Robotics and Automation (ICRA), pp. 4582–4587 (2007)

    Google Scholar 

  8. Reinstein, M., Hoffmann, M.: Dead reckoning in a dynamic quadruped robot: inertial navigation system aided by a legged odometer. In: IEEE/RSJ International Conference on Robotics and Automation (ICRA), pp. 617–624 (2011)

    Google Scholar 

  9. Lee, J., Hwangbo, J.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 5(47), eabc5986 (2020)

    Google Scholar 

  10. Hwangbo, J., Lee, J.: Learning agile and dynamic motor skills for legged robots. Sci. Robot. 4(26), eaau5872 (2019)

    Google Scholar 

  11. Wawrzyński, P., Tanwani, A.K.: Autonomous reinforcement learning with experience replay. Neural Netw. 41(5), 156–167 (2013)

    Article  Google Scholar 

  12. Wawrzyński, P.: Reinforcement learning with experience replay for model-free humanoid walking optimization. Int. J. Humanoid Rob. 11(3), 137–2187 (2014)

    Google Scholar 

  13. Rotella, N., Bloesch, M., Righetti, L.: State estimation for a humanoid robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 952–958 (2014)

    Google Scholar 

  14. Wawrzyński, P., Możaryn, J., Klimaszewski, J.: Robust estimation of walking robots velocity and tilt using proprioceptive sensors data fusion. Robot. Auton. Syst. 66, 44–54 (2015)

    Article  Google Scholar 

  15. Okita, N., Sommer H.J.: A novel foot slip detection algorithm using unscented Kalman Filter innovation. In: American Control Conference, pp. 5163–5168 (2012)

    Google Scholar 

  16. Takemura, H., Deguchi, M., Ueda, J.: Slip-adaptive walk of quadruped robot. Robot. Auton. Syst. 53(2), 124–141 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y. et al. (2021). Research on Foot Slippage Estimation of Mammal Type Legged Robot. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13016. Springer, Cham. https://doi.org/10.1007/978-3-030-89092-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89092-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89091-9

  • Online ISBN: 978-3-030-89092-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics