Skip to main content

Motion Planning of Docking Process for Underwater Vehicle Based on Manipulator Aided Grasping

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13016))

Included in the following conference series:

  • 3192 Accesses

Abstract

Underwater vehicle-manipulator system (UVMS) is a useful tool for underwater inspection, maintenance, and repair task. And underwater docking systems can fulfill underwater charging and data exchange for UVMS. However, docking operation is difficult due to complex underwater environment. The manipulator can be applied to aid the docking mission. In this study, the dynamic model of UVMS including vehicle and manipulator is proposed, and the relationships of kinematics about end effector and system velocity are established. Based on three possible tasks, singularity-robust task priority redundancy resolution method is modified considering joint limits. Two cases using direct pseudoinverse method and task priority method are compared. The results of numerical simulation show that our proposed method can coordinate the motion of UVMS and complete docking mission successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brighenti, A., Zugno, L., Mattiuzzo, F., Sperandio, A.: Eurodocker - a universal docking - downloading - recharging system for auvs: Conceptual design results. In: IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings, pp. 1463–1467. IEEE, Nice (1998)

    Google Scholar 

  2. Evans, J.C., Keller, K.M., Smith, J.S., Marty, P., Rigaud, O.V.: Docking techniques and evaluation trials of the swimmer auv: An autonomous deployment auv for work-class rovs. In: MTS/IEEE OCEANS 2001. An Ocean Odyssey. Conference Proceedings, pp. 520–528. IEEE, Honolulu (2001)

    Google Scholar 

  3. Stokey, R., et al.: Enabling technologies for remus docking: An integral component of an autonomous ocean-sampling network. IEEE J. Oceanic Eng. 26(4), 487–497 (2001)

    Article  Google Scholar 

  4. Allen, B., et al.: Autonomous docking demonstrations with enhanced remus technology. In: OCEANS 2006, pp. 1–6. IEEE, Boston (2006)

    Google Scholar 

  5. Evans, J., Redmond, P., Plakas, C., Hamilton, K., Lane, D.: Autonomous docking for intervention-auvs using sonar and video-based real-time 3d pose estimation. In: Proceedings of the MTS/IEEE Oceans 2003, pp. 2201–2210. IEEE, San Diego (2003)

    Google Scholar 

  6. Kawasaki, T., Noguchi, T., Fukasawa, T., Baino, M.: Development of auv “marine bird” with underwater docking and recharging system. In: The 3rd International Workshop on Scientific Use of Submarine Cables and Related Technologies, IEEE, Tokey (2003)

    Google Scholar 

  7. Weiss, P., Vicente, J., Grossnet, D., Brignone, L., Labbe, D.F.L., Wilson, P.: Freesub: Dynamic stabilization and docking for autonomous underwater vehicles. In: 13th International Symposium on Unmanned Untethered Submersible Technology, pp. 1–6. IEEE, Durham (2003)

    Google Scholar 

  8. Sotiropoulos, P., Tosi, N., Andritsos, F., Geffard, F.: Optimal docking pose and tactile hook-localisation strategy for auv intervention: The difis deployment case. Ocean Eng. 46, 33–45 (2012)

    Article  Google Scholar 

  9. Palomeras, N., et al.: I-auv docking and panel intervention at sea. Sensors-Basel 16(10), 1673 (2016)

    Article  Google Scholar 

  10. Wu, L., Li, Y., Su, S., Yan, P., Qin, Y.: Hydrodynamic analysis of auv underwater docking with a cone-shaped dock under ocean currents. Ocean Eng. 85, 110–126 (2014)

    Article  Google Scholar 

  11. Page, B.R., Mahmoudian, N.: Simulation-driven optimization of underwater docking station design. IEEE J. Oceanic Eng. 45(2), 404–413 (2020)

    Article  Google Scholar 

  12. Chen, J., et al.: A novel autonomous docking method of unmanned marine vehicle based on manipulator. Appl. Mech. Mater. 364, 370–374 (2013)

    Article  Google Scholar 

  13. Li, Y., Zhang, Q., Feng, X.: Inverse kinematic solution and simulation for rovs-manipulators system. In: 2008 Chinese Control and Decision Conference, pp. 3345–3348. IEEE, Yantai (2008)

    Google Scholar 

  14. Schjølberg, I., Fossen, T.I.: Modelling and control of underwater vehicle-manipulator systems. In: Proceedings of the 3rd Conference on Marine Craft Maneuvering and Control, pp. 45–57. IFAC, Southhampton (1994)

    Google Scholar 

  15. Mohan, S., Kim, J.: Modelling, simulation and model reference adaptive control of autonomous underwater vehicle-manipulator systems. In: 2011 11th International Conference on Control, Automation and Systems, pp. 643–648. ICROS, Kintex, Gyeonggi-do (2011)

    Google Scholar 

  16. Huang, H., Tang, Q., Li, H., Liang, L., Li, W., Pang, Y.: Vehicle-manipulator system dynamic modeling and control for underwater autonomous manipulation. Multibody Sys.Dyn. 41(2), 125–147 (2016). https://doi.org/10.1007/s11044-016-9538-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Tarn, T.J., Shoults, G.A., Yang, S.P.: A dynamic model of an underwater vehicle with a robotic manipulator using kane’s method. Auton. Robot. 3(2), 269–283 (1996). https://doi.org/10.1007/BF00141159

    Article  Google Scholar 

  18. Yang, K., Wang, X., Ge, T., Wu, C.: A dynamic model of rov with a robotic manipulator using kane's method. In: 2013 Fifth Conference on Measuring Technology and Mechatronics Automation, pp. 9–12. IEEE, Hong Kong (2013)

    Google Scholar 

  19. From, P.J., Duindam, V., Pettersen, K.Y., Gravdahl, J.T., Sastry, S.: Singularity-free dynamic equations of vehicle–manipulator systems. Simul. Model. Pract. Th. 18(6), 712–731 (2010). https://doi.org/10.1016/j.simpat.2010.01.012

    Article  Google Scholar 

  20. Teo, K., An, E., Beaujean, P.-P.J.: A robust fuzzy autonomous underwater vehicle (auv) docking approach for unknown current disturbances. IEEE J. Oceanic Eng. 37(2), 143–155 (2012)

    Article  Google Scholar 

  21. Zhang, T., Li, D., Yang, C.: Study on impact process of auv underwater docking with a cone-shaped dock. Ocean Eng. 130, 176–187 (2017)

    Article  Google Scholar 

  22. Yazdani, A.M., Sammut, K., Yakimenko, O.A., Lammas, A., Tang, Y., Mahmoud Zadeh, S.: Idvd-based trajectory generator for autonomous underwater docking operations. Robot. Auton. Syst. 92, 12–29 (2017)

    Article  Google Scholar 

  23. Meng, L., Lin, Y., Gu, H., Su, T.-C.: Study on dynamic docking process and collision problems of captured-rod docking method. Ocean Eng. 193, 106624 (2019)

    Article  Google Scholar 

  24. Cui, P., Yan, W., Cui, R., Yu, J.: Smooth path planning for robot docking in unknown environment with obstacles. Complexity 2018(6), 1–17 (2018)

    MATH  Google Scholar 

  25. Thomas, C., Simetti, E., Casalino, G.: A unifying task priority approach for autonomous underwater vehicles integrating homing and docking maneuvers. J. Mar. Sci. Eng. 9(2), 162 (2021)

    Article  Google Scholar 

  26. Li, Y., Jiang, Y., Cao, J., Wang, B., Li, Y.: Auv docking experiments based on vision positioning using two cameras. Ocean Eng. 110, 163–173 (2015)

    Article  Google Scholar 

  27. Li, D., Chen, Y., Shi, J., Yang, C.: Autonomous underwater vehicle docking system for cabled ocean observatory network. Ocean Eng. 109, 127–134 (2015)

    Article  Google Scholar 

  28. Trslic, P., et al.: Vision based autonomous docking for work class rovs. Ocean Eng. 196, 106840 (2020)

    Article  Google Scholar 

  29. Wang, T., Zhao, Q., Yang, C.: Visual navigation and docking for a planar type auv docking and charging system. Ocean Eng. 224, 108744 (2021)

    Article  Google Scholar 

  30. Vallicrosa, G., Bosch, J., Palomeras, N., Ridao, P., Carreras, M., Gracias, N.: Autonomous homing and docking for auvs using range-only localization and light beacons. IFAC-PapersOnLine 49(23), 54–60 (2016)

    Article  MathSciNet  Google Scholar 

  31. Anderlini, E., Parker, G.G., Thomas, G.: Docking control of an autonomous underwater vehicle using reinforcement learning. Appl. Sci-Basel 9(17), 3456 (2019)

    Article  Google Scholar 

  32. Antonelli, G.: Underwater robots, 4th edn. Springer International Publishing AG, Gewerbestrasse (2018). https://doi.org/10.1007/978-3-319-77899-0

    Book  Google Scholar 

  33. Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE T. Robotic. Autom. 13(3), 398–410 (1997)

    Article  Google Scholar 

  34. Antonelli, G.: Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Trans. Robot. 25(5), 985–994 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyu Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Chang, Z., Shen, K., Li, J., Zheng, Z. (2021). Motion Planning of Docking Process for Underwater Vehicle Based on Manipulator Aided Grasping. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13016. Springer, Cham. https://doi.org/10.1007/978-3-030-89092-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89092-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89091-9

  • Online ISBN: 978-3-030-89092-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics