Skip to main content

Non-singular Fast Terminal Sliding Mode Fuzzy Adaptive Control of Floating-Based Three-Link Space-Robot with Dead-Zone

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13016))

Included in the following conference series:

  • 3173 Accesses

Abstract

For the angle tracking control problem of free floating three bar space manipulator with disturbance torque and joint dead zone, non singular fast terminal sliding mode fuzzy adaptive control is adopted to realize finite time stabilization of tracking error. In this method, a nonsingular fast terminal sliding surface is used to make the state variables converge rapidly in the sliding phase; The improved double power reaching law is selected to improve the convergence speed of state variables in the approaching motion stage, and fuzzy control is used to eliminate chattering and improve the control accuracy. At the same time, considering the dead time characteristics and disturbance torque of the manipulator joint, an adaptive compensator is designed to approach the upper bound of the dead time characteristics through adaptive control, so as to ensure the effective implementation of the tracking control. Finally, based on Lyapunov method, the global stability of the closed-loop system is proved theoretically, and the numerical simulation shows that the controller can effectively realize the task space path tracking control, effectively improve the trajectory tracking accuracy and anti disturbance ability, and alleviate the chattering phenomenon in the output of the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, C.A., Li, G.D., Wu, K.H., Hong, B.G.: Research summarizing of free flying space robot. Robot 24(4), 380–384 (2002)

    Google Scholar 

  2. Zhang, W.H., Ye, X.P., Ji, X.M., Wu, X.L., Zhu, Y.F., Wang, C.: Development summarizing of space robot technology national and outside. Flight Dyn. 31(03), 98–202 (2013)

    Google Scholar 

  3. King, D.: Space servicing: past, present and future. In: Proceeding of the 6th International Symposium on Artificial Intelligence. Robot and Automation in Space, Montreal, Canada, pp. 346–351(2001)

    Google Scholar 

  4. Tian, Z., Wu, H.: Spatial operator algebra for free-floating space robot modeling and simulation. Chin. J. Mech. Eng. 23(5), 635–640 (2011)

    Article  Google Scholar 

  5. Feng, F., Li, Y.W., Liu, H., et al.: Design schemes and comparison research of the end-effector of large space manipulator. Chin. J. Mech. Eng. 25(4), 674–687 (2012)

    Article  Google Scholar 

  6. Zhao, J.B., Wang, X., Zhang, G., et al.: Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots. Integr. Comput. Aided Eng. 23(1), 15–30 (2015)

    Article  Google Scholar 

  7. Van Cuong, P., Nan, W.Y.: Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Neural Comput. Appl. 27(2), 525–536 (2015). https://doi.org/10.1007/s00521-015-1873-4

    Article  Google Scholar 

  8. Man, Z., Paplinski, A.P., Wu, H.R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulator. IEEE Trans. Autom. Control 39(12), 2464–2469 (1994)

    Article  MathSciNet  Google Scholar 

  9. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  Google Scholar 

  10. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid space-craft with finite time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  Google Scholar 

  11. Gao, W.B.: Theory and design method of variable structure control, pp. 211–225. Science Press(1995)

    Google Scholar 

  12. Li, H.J., Cai, Y.L.: Sliding mode control method based on double power reaching law. Control Decis. 31(3), 498–502 (2016)

    MATH  Google Scholar 

  13. Wu, A.G., Wu, S.H., Dong, N.: Non singular fast terminal sliding model fuzzy control of robotic manipulator. J. Zhejiang Univ. (Eng. Sci.) 53(05), 49–58 (2019)

    Google Scholar 

  14. Nekoukar, V., Erfanian, A.: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Sets Syst. 179(1), 34–49 (2011)

    Article  MathSciNet  Google Scholar 

  15. Mao, Y.Q., Huang, Y.L., Wang, Z.F.: Adaptive fuzzy sliding mode decentralized control of high-order coupling robot systems. J. Dyn. Control 9(4), 337–341 (2011)

    Google Scholar 

  16. Li, T.H.S., Huang, Y.C.: MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Inf. Sci. 180(23), 4641–4660 (2010)

    Article  MathSciNet  Google Scholar 

  17. Amer, A.F., Sallam, E.A., Elawady, W.M.: Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators. Appl. Soft Comput. J. 11(8), 4943–4953 (2011)

    Article  Google Scholar 

  18. Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013). https://doi.org/10.1007/s11071-013-0983-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Yoo, B.K., Ham, W.C.: Adaptive control of robot manipulator using fuzzy compensator. IEEE Trans. Fuzzy Syst. 8(2), 186–199 (2000)

    Article  Google Scholar 

  20. Tran, M.-D., Kang, H.-J.: A novel adaptive finite-time tracking control for robotic manipulators using nonsingular terminal sliding mode and RBF neural networks. Int. J. Precis. Eng. Manuf. 17(7), 863–870 (2016). https://doi.org/10.1007/s12541-016-0105-x

    Article  Google Scholar 

  21. Lewis, F.L., Campos. J., Selmic, R.: Neural-fuzzy control of industrial systems with actuator nonlinearities, pp. 23–30. University City Science Center, New York (2002)

    Google Scholar 

  22. Lu, Y., Liu, J.K., Sun, F.C.: Actuator nonlinearities compensation using RBF neural networks in robot control system. In: Proceedings of the 4th CESA Multi-Conference on Computation Engineering in Systems Application, Beijing, China, vol. 1, pp. 231–238 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Yu, X., Gong, J. (2021). Non-singular Fast Terminal Sliding Mode Fuzzy Adaptive Control of Floating-Based Three-Link Space-Robot with Dead-Zone. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13016. Springer, Cham. https://doi.org/10.1007/978-3-030-89092-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89092-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89091-9

  • Online ISBN: 978-3-030-89092-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics