Skip to main content

Optimization Algorithm for Cooperative Assembly Sequence of Truss Structure Based on Reinforcement Learning

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13016))

Included in the following conference series:

  • 3783 Accesses

Abstract

Truss structure is widely used in the aerospace field, which has good structural performance and high structural efficiency. The truss structure plays an important role in the construction of alien ground scientific research stations. Considering the time and energy required for manual assembly, autonomous assembly is a better choice than manual assembly. The installation of the truss structure without external support needs multiple dual-arm mobile robots to work cooperatively. This article analyzes the constraints of the assembly process of the truss structure, and proposes a multi-objective optimization algorithm of truss structure assembly sequence based on reinforcement learning for multi-machine collaborative assembly. Our algorithm computes an assembly sequence with short time consumption, low energy consumption and stable structure during construction for variable number of mobile dual-arm robots assembling various types of truss structures. Experiments are executed to prove that the proposed algorithm can greatly improve the efficiency of assembly. This algorithm can also be generalized and applied to other multi-robot cooperation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Diftler, M., Jenks, K.C., Williams, L.E.P.: Robonaut: a telepresence-based astronaut assistant//Telemanipulator and telepresence technologies VIII. Int. Soc. Opt. Photon. 4570, 142–152 (2002)

    Google Scholar 

  2. Diftler, M.A., Ahlstrom, T.D., Ambrose, R.O., et al.: Robonaut 2 – initial activities on-board the ISS. In: 2012 IEEE Aerospace Conference, pp. 1–12. IEEE (2012)

    Google Scholar 

  3. Rehnmark, F., Bluethmann, W., Rochlis, J. et al.: An effective division of labor between human and robotic agents performing a cooperative assembly task. In: Proceedings of 2003 IEEE International Conference on Humanoid Robots. Institute of Electrical and Electronics Engineers, New York, NY (2003).

    Google Scholar 

  4. Rehnmark, F., Currie, N., Ambrose, R.O., et al.: Human-centric teaming in a multi-agent EVA assembly task. SAE Trans. 1105–1113 (2004)

    Google Scholar 

  5. Guo, J., Wang, P., Cui, N.: Ant colony algorithm for assembly sequence planning of large space truss structures. In: 2007 IEEE International Conference on Control and Automation, pp. 2027–2030. IEEE (2007)

    Google Scholar 

  6. McEvoy, M., Komendera, E., Correll N.: Assembly path planning for stable robotic construction. In: 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), pp. 1–6. IEEE (2014)

    Google Scholar 

  7. Gunji, A.B., Deepak, B., Bahubalendruni, C.R., et al.: An optimal robotic assembly sequence planning by assembly subsets detection method using teaching learning-based optimization algorithm. IEEE Trans. Autom. Sci. Eng. 15(3), 1369–1385 (2018)

    Article  Google Scholar 

  8. Zhu, X., Wang, C., Chen, M., et al.: Concept plan and simulation of on-orbit assembly process based on human–robot collaboration for erectable truss structure. In: International Conference on Man-Machine-Environment System Engineering, pp. 683–691. Springer, Singapore (2020).

    Google Scholar 

  9. Wang, X., Li, S., Wang, C., Chen, M., Wang, J.: Dual-arm robot based compliant assembly of space truss struts and spherical joints. Manned Spaceflight 26(6), 741–750 (2020). (in Chinese)

    Google Scholar 

  10. Zhao, C., Guo, W., Lin, R., Li, M.: An innovation design method for connector system. Mach. Des. Res. 35(5):28–31+40 (2019) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, J., Chen, M., Zhang, T. (2021). Optimization Algorithm for Cooperative Assembly Sequence of Truss Structure Based on Reinforcement Learning. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13016. Springer, Cham. https://doi.org/10.1007/978-3-030-89092-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89092-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89091-9

  • Online ISBN: 978-3-030-89092-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics