Skip to main content

Variable Stiffness Actuator Structure for Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Abstract

Based on the idea of regulating the variation on stiffness by controlling the number of springs involved in the work, this paper designs a kind of variable stiffness actuator (VSA) which can be applied to the field of robot. The variable stiffness structure takes the spiral tensile spring as the elastic element, and the number of springs Participating in the work is controlled by the push-pull electromagnet. It has the accurate positive and negative 32 kinds of stiffness adjustment values. The structure model was established by using SolidWorks. MATLAB analysis was used to optimize the design of the structure and conduct mechanical and structural stiffness analysis, and the angle range and stiffness range of the actuator were obtained, which had showed a uniform characteristic of distribution of adjustable stiffness values in stiffness range interval. The conclusion is that the VSA has the advantages of real-time and accurate change of stiffness, wide variation range of stiffness and wide adjustment range of angle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zacharaki, A., Kostavelis, I., Gasteratos, A., Dokas, I.M.: Safety bounds in human robot interaction: a survey. Saf. Sci. 127, 104667 (2020)

    Article  Google Scholar 

  2. Ham, R.V., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)

    Article  Google Scholar 

  3. Vanderborght, B., Albuschaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., et al.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  4. Yu, N., Zou, W., Sun, Y.: Passivity guaranteed stiffness control with multiple frequency band specifications for a cable-driven series elastic actuator. Mech. Syst. Signal Process. 117, 709–722 (2019)

    Article  Google Scholar 

  5. Sun, L., Li, M., Wang, M., Yin, W., Sun, N., Liu, J.: Continuous finite-time output torque control approach for series elastic actuator. Mech. Syst. Signal Process. 139, 105853 (2020)

    Article  Google Scholar 

  6. Chen, B., Zi, B., Wang, Z., Qin, L., Liao, W.H.: Knee exoskeletons for gait rehabilitation and human performance augmentation: a state-of-the-art. Mech. Mach. Theory 134, 499–511 (2019)

    Article  Google Scholar 

  7. Plooij, M., Wisse, M., Vallery, H.: Reducing the energy consumption of robots using the bidirectional clutched parallel elastic actuator. IEEE Trans. Robot. 32(6), 1512–1523 (2016)

    Article  Google Scholar 

  8. Mathijssen, G., Furnemont, R., Brackx, B., Van Ham, R., Lefeber, D., Vanderborght, B.: Design of a novel intermittent self-closing mechanism for a MACCEPA-based Series-Parallel Elastic Actuator (SPEA). In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2809–2814 (2014)

    Google Scholar 

  9. Beyl, P., Van Damme, M., Van Ham, R., Vanderborght, B.: Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons. IEEE/ASME Trans. Mechatron. 19(3), 1046–1056 (2014)

    Article  Google Scholar 

  10. Hollander, K.W., Ilg, R., Sugar, T.G., Herring, D.: “An efficient robotic tendon for gait assistance. J. Biomech. Eng. 128(5), 788–791 (2006)

    Article  Google Scholar 

  11. Migliore, S.A., Brown, E.A.: Biologically inspired joint stiffness control. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 4519–4524 (2005)

    Google Scholar 

  12. Wolf, S., et al.: Variable stiffness actuators: review on design and components. IEEE/ASME Trans. Mechatron. 21(5), 2418–2430 (2016)

    Article  Google Scholar 

  13. Tagliamonte, N.L., Sergi, F., Accoto, D., Carpino, G., Guglielmelli, E.: Double actuation architectures for rendering variable impedance in compliant robots: a review. Mechatronics 22(8), 1187–1203 (2012)

    Article  Google Scholar 

  14. Lemerle, S., Grioli, G.¸ Bicchi, A., Catalano, M.G.: A variable stiffness elbow joint for upper limb prosthesis. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7327–7334 (2019)

    Google Scholar 

  15. Liu, Y., Liu, X., Yuan, Z., Liu, J.: Design and analysis of spring parallel variable stiffness actuator based on antagonistic principle. Mech. Mach. Theory 140, 44–58 (2019)

    Article  Google Scholar 

  16. Bilancia, P., Berselli, G., Palli, G.: Virtual and physical prototyping of a beam-based variable stiffness actuator for safe human-machine interaction. Robot. Comput. Integr. Manuf. 65, 101886 (2020)

    Article  Google Scholar 

  17. Hollander, K., Sugar, T., Herring, D.: Adjustable robotic tendon using a ‘jack spring’. In: Proceedings of 9th International Conference on Rehabilitation Robotics (ICORR 2005), pp. 113–118 (2005)

    Google Scholar 

  18. Xu, Y., Guo, K., Sun, J., Li, J.: Design, modeling and control of a reconfigurable variable stiffness actuator. Mech. Syst. Signal Process. 160, 107883 (2021)

    Article  Google Scholar 

  19. Xu, Y., Guo, K., Sun, J., Li, J.: Design and analysis of a linear digital variable stiffness actuator. IEEE Access 9, 13992–14004 (2021)

    Article  Google Scholar 

  20. Xu, Y., Guo, K., Li, J., Li, Y.: A novel rotational actuator with variable stiffness using S-shaped springs. IEEE/ASME Trans. Mechatron. 26(4), 2249–2260 (2020)

    Article  Google Scholar 

  21. Wolf, S., Hirzinger, G.: A new variable stiffness design: matching requirements of the next robot generation. Accepted at ICRA 2008: IEEE International Conference on Robotics and Automation (ICRA2008) (2008)

    Google Scholar 

  22. Chen, G., Qi, P., Guo, Z., Yu, H.: Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation. Mech. Mach. Theory 103, 51–64 (2016)

    Article  Google Scholar 

  23. Li, X., Liu, Y., Yu, H.: Iterative learning impedance control for rehabilitation robots driven by series elastic actuators. Automatica 90(90), 1–7 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Haldane, D.W., Plecnik, M.M., Yim, J.K., Fearing, R.S.: Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1(1), eaag2048 (2016)

    Google Scholar 

  25. Yu, H., Huang, S., Chen, G., Thakor, N.: Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 23(8), 1072–1083 (2013)

    Article  Google Scholar 

  26. Guo, K., Li, M., Shi, W.¸ Pan, Y., et al.: Adaptive tracking control of hydraulic systems with improved parameter convergence. IEEE Trans. Ind. Electron., 1 (2021). https://doi.org/10.1109/TIE.2021.3101006

  27. Guo, K., Pan, Y., Zheng, D., Yu, H., et al.: Composite learning control of robotic systems: a least squares modulated approach. Automatica 111, 108612 (2020)

    Article  MathSciNet  Google Scholar 

  28. Guo, K., Zheng, D., Li, J.: Optimal bounded ellipsoid identification with deterministic and bounded learning gains: design and application to Euler-Lagrange Systems. IEEE Trans. Cybern., 1–14 (2021).  https://doi.org/10.1109/TCYB.2021.3066639

  29. Guo, K., Pan, Y., Yu, H.: Composite learning robot control with friction compensation: a neural network-based approach. IEEE Trans. Ind. Electron. 66(10), 7841–7851 (2019)

    Article  Google Scholar 

  30. Zhang, Y., Guo, K., Sun, J., Sun, Y., et al.: Method of postures selection for industrial robot joint stiffness identification. IEEE Access 9, 1–10 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, C., Guo, K., Sun, J. (2021). Variable Stiffness Actuator Structure for Robot. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13013. Springer, Cham. https://doi.org/10.1007/978-3-030-89095-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89095-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89094-0

  • Online ISBN: 978-3-030-89095-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics