Skip to main content

Application of CG Pseudo-spectral Method to Optimal Posture Adjustment of Robot Manipulator

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Abstract

To consider the energy saving during the robot motion, optimal posture control method for a robot manipulator is proposed. The Chebyshev-Gauss (CG) Pseudo-spectral method is used to discuss the problem with the energy optimal control. The Lagrange interpolation of barycentre is adopted to approximate the state and control variables. The continuous optimal control problem can be converted to a discrete nonlinear programming (NLP) problem. And then it can be solved by Sequential Quadratic Programming (SQP) algorithm. The simulation results of optimal energy control make the robot manipulator from the initial state to the desired terminal posture successfully. The terminal angular velocity of each link is also meet the predetermined value. The control law does not exceed the preset boundary of control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Theodoridis, T., Hu, H.S.: Toward intelligent security robots: a survey. IEEE Trans. Syst. Man. Cy. C. 42(6), 1219–1230 (2012)

    Article  Google Scholar 

  2. Li, C.J., Ma, G.F.: Optimal Control (in Chinese). Science Press, Beijing (2011)

    Google Scholar 

  3. Li, S., Duan, G.R.: Parametric approach to track following control of FFSM. J. Syst. Eng. Electron. 22, 810–815 (2011)

    Article  Google Scholar 

  4. Mostaza-Prieto and P. C. E. Roberts, “Perigee attitude maneuvers of geostationary satellites during Electric orbit raising,” J. Guid. Control. Dynam., 40, 1978–1989, 2017.

    Google Scholar 

  5. Liao, Y.X., Li, H.F., Bao, W.M.: Indirect Radau pseudospectral method for the receding horizon control problem. CHINESE J. Aeronaut. 29, 215–227 (2016)

    Article  Google Scholar 

  6. Yao, Q., Ge, X.: Optimal reorientation of a free-floating space robot subject to initial state uncertainties. J. Braz. Soc. Mech. Sci. Eng. 40(3), 1–12 (2018). https://doi.org/10.1007/s40430-018-1064-1

    Article  MathSciNet  Google Scholar 

  7. Tang, X.J., Wei, J.L., Kai, C.: A Chebyshev-Gauss pseudospectral method for solving optimal control problems. ACTA Automatica Sinica. 41, 1778–1787 (2015)

    Article  Google Scholar 

  8. Tang, X.J.: Numerical solution of optimal control problems using multiple-interval integral Gegenbauer pseudospectral methods. ACTA Astronaut. 121, 63–75 (2016)

    Article  Google Scholar 

  9. Ge, X., Yi, Z., Chen, L.: Optimal control of attitude for coupled-rigid-body spacecraft via Chebyshev-Gauss pseudospectral method. Appl. Math. Mech. 38(9), 1257–1272 (2017). https://doi.org/10.1007/s10483-017-2236-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Arimoto, S.: “Control theory of non-linear mechanical systems: A passivity-based and circuit-theoretic approach. Clarendon Press, Oxford, U.K. (1996)

    MATH  Google Scholar 

  11. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot manipulator control: Theory and practice. Marcel Dekker, New York (2004)

    Google Scholar 

  12. Sciavicco, L., Siciliano, B.: Modeling and control of robot manipulators, 2nd edn. Springer-Verlag, London, U.K. (2000)

    Book  Google Scholar 

  13. Su, Y.X., Müller, P.C., Zheng, C.H.: Global asymptotic saturated pid control for robot manipulators. IEEE Trans. Contr. Syst. T. 18(6), 1280–1288 (2010)

    Google Scholar 

  14. Weideman, J., Trefethen, L.: The kink phenomenon in Fejér and Clenshaw-Curtis quadrature. Numer. Math. 107, 707–727 (2007)

    Article  MathSciNet  Google Scholar 

  15. Berrut, J.P., Trefethen, L.N.: Barycentric lagrange interpolation. Siam Rev. 46, 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  16. Costa, B., Don, W.S.: On the computation of high order pseudo-spectral derivatives. Appl. Numer. Math. 33, 151–159 (2000)

    Article  MathSciNet  Google Scholar 

  17. Waldvogel, J.: Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT Numer. Math. 46, 195–202 (2006)

    Article  Google Scholar 

  18. Wang, Y.B., Zhao, Y.M., Bortoff, S.A., Ueda, K.: A real-time energy-optimal trajectory generation method for a servomotor system. IEEE Trans. Ind. Electron. 62(2), 1175–1188 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Key R&D Program of China (Grant No. 2019YFB1301403) and National Natural Science Foundation of China (Grant No.62073043). (Corresponding author: Xingguang Duan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguang Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Q. et al. (2021). Application of CG Pseudo-spectral Method to Optimal Posture Adjustment of Robot Manipulator. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13013. Springer, Cham. https://doi.org/10.1007/978-3-030-89095-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89095-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89094-0

  • Online ISBN: 978-3-030-89095-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics