Skip to main content

A Current-Based Surface Electromyography (sEMG) System for Human Motion Recognition: Preliminary Study

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13013))

Included in the following conference series:

  • 3700 Accesses

Abstract

The myoelectric interface acts as an important role in the field of wearable robotics. This study explores the current-based sEMG technology for upper-limb motion recognition. Different from the voltage-based sEMG system, the current-based sampling approach can directly extract the current signals and be free from the cross talks. The technology facilitate the myoelectric sampling in a non-ideal environment such as underwater. We designed the sensing circuit with a feedback-loop current amplification module, and analyzed the stability. After development of the system, three healthy subjects participated in the experiment. Six basic wrist joint motions were investigated. With the selected feature set and the designed classification method, The average recognition accuracies across the subjects were 96.3%, 94.2%, and 95.8% respectively. The preliminary results demonstrate that the current-based sEMG technology is a promising solution to upper-limb motion recognition in a rigorous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazerooni, H., Racine, J.L., Huang, L., Steger, R.: On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE Int. Conf. Robot. Autom. 14(3), 4353–4360 (2006). https://doi.org/10.1109/ROBOT.2005.1570790

    Article  Google Scholar 

  2. Kawamoto, H., Sankai, Y.: Power assist method based on Phase Sequence and muscle force condition for HAL. Adv. Robot. 19(7), 717–734 (2005). https://doi.org/10.1163/1568553054455103

    Article  Google Scholar 

  3. Talaty, M., Esquenazi, A., Jorge E. Briceño.: Differentiating ability in users of the ReWalk(TM) powered exoskeleton: an analysis of walking kinematics. IEEE Int. Conf. Rehabil. Robot., 1–5 (2013). https://doi.org/10.1109/ICORR.2013.6650469

  4. Gao, S., Mai, J., Zhu, J., Wang, Q.: Mechanism and controller design of a transfemoral prosthesis with electrohydraulic knee and motor-driven ankle. IEEE ASME Trans. Mechatron., (on-line) (2020). https://doi.org/10.1109/TMECH.2020.3040369

  5. Rogers, E.A., Carney, M.E., Yeon, S.H., Clites, T.R., Herr, H.M.: An ankle-foot prosthesis for rock climbing augmentation. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 41–51 (2021). https://doi.org/10.1109/TNSRE.2020.3033474

    Article  Google Scholar 

  6. Wehner, M., et al.: A lightweight soft exosuit for gait assistance. In: IEEE International Conference on Robotics and Automation, pp. 3347–3354 (2013). https://doi.org/10.1109/ICRA.2013.6631046

  7. Wang, Q., Zhou, Z., Zhang, Z., Lou, Y., Mai, J.: An underwater lower-extremity soft exoskeleton for breaststroke assistance. IEEE Trans. Med. Robot. Bionics 2(3), 447–462 (2020). https://doi.org/10.1109/TMRB.2020.2993360

    Article  Google Scholar 

  8. Wu, Y., Jiang, D., Liu, X., Bayford, R., Demosthenous, A.: A human-machine interface using electrical impedance tomography for hand prosthesis control. IEEE Trans. Biomed. Circuits Syst. 12(6), 1322–1333 (2018). https://doi.org/10.1109/TBCAS.2018.2878395

    Article  Google Scholar 

  9. Delpreto, J., Rus, D.: Sharing the load: human-robot team lifting using muscle activity. In: IEEE International Conference on Robotics and Automation, pp. 7906–7912 (2019). https://doi.org/10.1109/ICRA.2019.8794414

  10. Merletti, R., Botter, A., Troiano, A., Merlo, E., Minetto, M.A.: Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. Clin. Biomech. 24(2), 122–134 (2009). https://doi.org/10.1016/j.clinbiomech.2008.08.006

    Article  Google Scholar 

  11. Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G.: Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10(5), 361–374 (2000). https://doi.org/10.1016/S1050-6411(00)00027-4

    Article  Google Scholar 

  12. B Rodríguez-Tapia, Soto, I., DM Martínez, Arballo, N. C.: Myoelectric interfaces and related applications: current state of EMG signal processing-A systematic review. IEEE Access, 7792–7805 (2020). https://doi.org/10.1109/ACCESS.2019.2963881

  13. Bi, L., Feleke, A.G., Guan, C.: A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration. Biomed. Signal Process. Control 51(5), 113–127 (2019). https://doi.org/10.1016/j.bspc.2019.02.011

    Article  Google Scholar 

  14. Rechy-Ramirez, E.J., Hu, H.: Bio-signal based control in assistive robots: a survey. Digit. Commun. Netw. 1(2), 85–101 (2015). https://doi.org/10.1016/j.dcan.2015.02.004

    Article  Google Scholar 

  15. Huang, H., Zhang, F., Hargrove, L.J., Dou, Z., Rogers, D.R., Englehart, K.B.: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans. Biomed. Eng. 58(10), 2867–2875 (2011). https://doi.org/10.1109/TBME.2011.2161671

    Article  Google Scholar 

  16. Tang, Z., Zhang, K., Sun, S., Gao, Z., Zhang, L., Yang, Z.: An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors 14(4), 6677–6694 (2014). https://doi.org/10.3390/s140406677

    Article  Google Scholar 

  17. Zhang, Q., Liu, R., Chen, W., Xiong, C.: Simultaneous and continuous estimation of shoulder and elbow kinematics from surface EMG signals. Front. Neurosci. 11, 280–291 (2017). https://doi.org/10.3389/fnins.2017.00280

    Article  Google Scholar 

  18. Tscharner, V.V., Maurer, C., Ruf, F., Nigg, B.M.: Comparison of electromyographic signals from monopolar current and potential amplifiers derived from a penniform muscle, the gastrocnemius medialis. J. Electromyogr. Kinesiol. 23(5), 1044–1051 (2013). https://doi.org/10.1016/j.jelekin.2013.07.011

    Article  Google Scholar 

  19. Vigotsky, A. D., Halperin, I., Lehman, G. J., Trajano, G. S., Vieira, T.: Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front. Physiol. 8 (2018). https://doi.org/10.3389/fphys.2017.00985

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62073318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enhao Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, C., Zheng, E., Wang, Q., Qiao, H. (2021). A Current-Based Surface Electromyography (sEMG) System for Human Motion Recognition: Preliminary Study. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13013. Springer, Cham. https://doi.org/10.1007/978-3-030-89095-7_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89095-7_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89094-0

  • Online ISBN: 978-3-030-89095-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics