Skip to main content

Gesture Recognition and Conductivity Reconstruction Parameters Analysis with an Electrical-Impedance-Tomography (EIT) Based Interface: Preliminary Results

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

  • 3464 Accesses

Abstract

With the development of Human-machine interface (HMI), the requirements of perceiving the human intention are much higher. Electrical Impedance Tomography (EIT) is a promising alternative to existing HMIs because of its portability, non-invasiveness and inexpensiveness. In this study, we designed an EIT-based gesture recognition method achieving the recognition of 9 forearm motion patterns. We analysed the parameters, including current level and contact impedance, which are relevant for practical applications in robotic control. The gesture recognition method produced an average accuracy of 99.845% over nine gestures with PCA and QDA model on one subject. The preliminary results of parameter analysis suggested that the resolution increased with the current amplitude less than a threshold (5.5 mA) but decreased when the current amplitude was over 5.5 mA. The mean value of Region of Interest (ROI) nodes didn’t change obviously when the contact impedance increased. In future works, extensive studies will be conducted on the priori information of forearm and biological-model-based methods to further improve recognition performances in more complicated tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg, J., Lu, S.: Review of interfaces for industrial human-robot interaction. Curr. Robot. Rep. 1(2), 27–34 (2020). https://doi.org/10.1007/s43154-020-00005-6

  2. Zhang, X.: Human-robot collaboration focusing on image processing (2020)

    Google Scholar 

  3. Badr, A.A., Abdul-Hassan, A.K.: A review on voice-based interface for human-robot interaction. Iraqi J. Electr. Electron. Eng. 16(2), 91–102 (2020)

    Google Scholar 

  4. Li, K., Zhang, J., Wang, L., Zhang, M., Li, J., Bao, S.: A review of the key technologies for sEMG-based human-robot interaction systems. Biomed. Sig. Process. Control 62, 102074 (2020)

    Google Scholar 

  5. Ajoudani, A.: Transferring Human Impedance Regulation Skills to Robots. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24205-7

  6. Jiang, S., Gao, Q., Liu, H., Shull, P.B.: A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition. Sens. Actuators A: Phys. 301, 111738 (2020)

    Google Scholar 

  7. Han, J., Ding, Q., Xiong, A., Zhao, X.: A state-space EMG model for the estimation of continuous joint movements. IEEE Trans. Ind. Electron. 62(7), 4267–4275 (2015)

    Google Scholar 

  8. Sikdar, S., et al.: Novel method for predicting dexterous individual finger movements by imaging muscle activity using a wearable ultrasonic system. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 69–76 (2013)

    Google Scholar 

  9. Zheng, E., Mai, J., Liu, Y., Wang, Q.: Forearm motion recognition with noncontact capacitive sensing. Front. Neurorobot. 12, 47 (2018)

    Google Scholar 

  10. Zheng, E., Zeng, J., Xu, D., Wang, Q., Qiao, H.: Non-periodic lower-limb motion recognition with noncontact capacitive sensing. In: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1816–1821 (2020)

    Google Scholar 

  11. Zhang, Y., Harrison, C.: Tomo: wearable, low-cost electrical impedance tomography for hand gesture recognition. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, pp. 167–173 (2015)

    Google Scholar 

  12. Jiang, D., Wu, Y., Demosthenous, A.: Hand gesture recognition using three-dimensional electrical impedance tomography. IEEE Trans. Circuits Syst. II: Express Briefs 67(9), 1554–1558 (2020)

    Google Scholar 

  13. Zheng, E., Li, Y., Zhao, Z., Wang, Q., Qiao, H.: An electrical-impedance-tomography-based interface for human-robot collaboration. IEEE/ASME Trans. Mechatron. (2020)

    Google Scholar 

  14. Zong, Z., Wang, Y., Wei, Z.: A review of algorithms and hardware implementations in electrical impedance tomography. Progr. Electromagn. Res. 169, 59–71 (2020)

    Google Scholar 

  15. Boyle, A.J.S.: The effect of boundary shape deformation on two-dimensional electrical impedance tomography. Ph.D. thesis, Carleton University (2010)

    Google Scholar 

  16. Adler, A., Guardo, R.: Electrical impedance tomography: regularized imaging and contrast detection. IEEE Trans. Med. Imaging 15(2), 170–179 (1996)

    Google Scholar 

  17. Adler, A., Lionheart, W.R.B.: Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27(5), S25 (2006)

    Google Scholar 

  18. Ghojogh, B., Crowley, M.: Unsupervised and supervised principal component analysis: tutorial. arXiv preprint arXiv:1906.03148 (2019)

  19. Ghojogh, B., Crowley, M.: Linear and quadratic discriminant analysis: tutorial. arXiv preprint arXiv:1906.02590 (2019)

  20. Lionheart, W.R.B., Kaipio, J., McLeod, C.N.: Generalized optimal current patterns and electrical safety in EIT. Physiol. Meas. 22(1), 85–90 (2001)

    Google Scholar 

  21. Chitturi, V., Farrukh, N.: Spatial resolution in electrical impedance tomography: a topical review. J. Electr. Bioimpedance 8, 66–78 (2017)

    Google Scholar 

  22. Aadler. The effect of contact impedance. [EB/OL]. http://eidors3d.sourceforge.net/tutorial/EIDORS_basics/contact_impedance.shtml Accessed 28 Feb 2017

  23. Boyle, A., Adler, A.: The impact of electrode area, contact impedance and boundary shape on EIT images. Physiol. Meas. 32(7), 745 (2011)

    Google Scholar 

  24. Canales-Vásquez, D.: Electrical impedance tomography (EIT) image reconstruction for the human forearm (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO. 62073318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enhao Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Zheng, E. (2021). Gesture Recognition and Conductivity Reconstruction Parameters Analysis with an Electrical-Impedance-Tomography (EIT) Based Interface: Preliminary Results. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics