Skip to main content

Experiments of Composite Learning Admittance Control on 7-DoF Collaborative Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

Abstract

With the increasing demand for collaborative robots in various industries, the implementation of interaction control algorithms with superior performances for collaborative robots becomes significant. This paper develops a composite learning admittance control (CLAC) approach and implements it to an industrial collaborative robot with 7 degrees of freedom named Franka Emika Panda. The interaction performance of the CLAC in the task space is verified by both force tracking and compliance control experiments. Experimental results show that the CLAC enables the Panda robot with favorable force tracking capability under a specific admittance model, high tracking accuracy in the free state, and satisfied compliance under motion constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hentout, A., Aouache, M., Maoudj, A., Akli, I.: Human-robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017. Adv. Robot. 33(15–16), 764–799 (2019)

    Article  Google Scholar 

  2. Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Contr. 103(2), 126–133 (1981)

    Article  Google Scholar 

  3. Hogan, N.: Impedance Control: an approach to manipulation: Part I—Theory. J. Dynamic Syst. Measurement Control 107(1), 1–7 (1985)

    Google Scholar 

  4. Anderson, R., Spong, M.: Hybrid impedance control of robotic manipulators. IEEE J. Robot. Automation 4(5), 549–556 (1988)

    Article  Google Scholar 

  5. Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Robot. Res. 16(1), 97–117 (1997)

    Article  Google Scholar 

  6. Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control for robot manipulators with an unknown environment: theory, simulation, and experiment. Int. J. Robot. Res. 20(9), 765–774 (2001)

    Google Scholar 

  7. Jung, S., Hsia, T., Bonitz, R.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004)

    Google Scholar 

  8. Roveda, L., Vicentini, F., Tosatti, L.M.: Deformation-tracking impedance control in interaction with uncertain environments. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1992–1997, Tokyo, Japan (2013)

    Google Scholar 

  9. Duan, J., Gan, Y., Chen, M., Dai, X.: Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot. Auton. Syst. 102, 54–65 (2018)

    Article  Google Scholar 

  10. Peng, L., Woo, P.Y.: Neural-fuzzy control system for robotic manipulators. IEEE Control Syst. Mag. 22(1), 53–63 (2002)

    Article  Google Scholar 

  11. Lu, W.S., Meng, Q.H.: Impedance control with adaptation for robotic manipulations. IEEE Trans. Robot. Autom. 7(3), 408–415 (1991)

    Article  Google Scholar 

  12. Kelly, R., Carelli, R., Amestegui, M., Ortega, R.: On adaptive impedance control of robot manipulators. In: Proceeding of International Conference on Robotics and Automation, Scottsdale, AZ, USA, pp. 572–577 (1989)

    Google Scholar 

  13. Carelli, R., Kelly, R.: An adaptive impedance/force controller for robot manipulators. IEEE Trans. Autom. Control 36(8), 967–971 (1991)

    Article  MathSciNet  Google Scholar 

  14. Wedeward, K., Colbaugh, R.: New stability results for direct adaptive impedance control. In: Proceeding of International Symposium on Intelligent Control, Monterey, CA, USA, pp. 281–287 (1995)

    Google Scholar 

  15. Chien, M.C., Huang, A.C.: Adaptive impedance control of robot manipulators based on function approximation technique. Robotica 22(4), 395–403 (2004)

    Article  Google Scholar 

  16. Jiang, Z.H.: Impedance control of flexible robot arms with parametric uncertainties. J. Intell. Rob. Syst. 42(2), 113–133 (2005)

    Article  Google Scholar 

  17. Sharifi, M., Behzadipour, S., Vossoughi, G.R.: Model reference adaptive impedance control of rehabilitation robots in operational space. In: Proceeding of IEEE RAS/ EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, pp. 1698–1703 (2012)

    Google Scholar 

  18. Sharifi, M., Behzadipour, S., Vossoughi, G.: Model reference adaptive impedance control in cartesian coordinates for physical human–robot interaction. Adv. Robot. 28(19), 1277–1290 (2014)

    Google Scholar 

  19. Sharifi, M., Behzadipour, S., Vossoughi, G.: Nonlinear model reference adaptive impedance control for human-robot interactions. Control. Eng. Pract. 32, 9–27 (2014)

    Article  Google Scholar 

  20. Li, X., Pan, Y., Chen, G., Yu, H.: Adaptive human-robot interaction control for robots driven by series elastic actuators. IEEE Trans. Rob. 33(1), 169–182 (2017)

    Article  Google Scholar 

  21. Pan, Y., Yu, H.: Composite learning robot control with guaranteed parameter convergence. Automatica 89, 398–406 (2018)

    Article  MathSciNet  Google Scholar 

  22. Guo, K., Pan, Y., Yu, H.: Composite learning robot control with friction compensation: a neural network-based approach. IEEE Trans. Industr. Electron. 66(10), 7841–7851 (2019)

    Article  Google Scholar 

  23. Guo, K., Pan, Y., Zheng, D., Yu, H.: Composite learning control of robotic systems: a least squares modulated approach. Automatica 111, Art. No. 108612 (2020)

    Google Scholar 

  24. Huang, D., Yang, C., Pan, Y., Cheng, L.: Composite learning enhanced neural control for robot manipulator with output error constraints. IEEE Trans. Industr. Inf. 17(1), 209–218 (2021)

    Article  Google Scholar 

  25. Jiang, Y., Wang, Y., Miao, Z., Na, J., Zhao, Z., Yang, C.: Composite-learning-based adaptive neural control for dual-arm robots with relative motion. IEEE Trans. Neural Networks Learn. Syst., to be published (2021). https://doi.org/10.1109/TNNLS.2020.3037795

  26. Sun, T., Peng, L., Cheng, L., Hou, Z.G., Pan, Y.: Composite learning enhanced robot impedance control. IEEE Trans. Neural Networks Learn. Syst. 31(3), 1052–1059 (2020)

    Article  MathSciNet  Google Scholar 

  27. Sun, T., Cheng, L., Peng, L., Hou, Z., Pan, Y.: Learning impedance control of robots with enhanced transient and steady-state control performances. Sci. China: Inf. Sci. 63(9), 1–13 (2020)

    Google Scholar 

  28. Albu-Schaffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)

    Article  Google Scholar 

  29. Kawasaki, H., Bito, T., Kanzaki, K.: An efficient algorithm for the model-based adaptive control of robotic manipulators. IEEE Trans. Robot. Autom. 12(3), 496–501 (1996)

    Article  Google Scholar 

  30. Gaz, C., Cognetti, M., Oliva, A., Giordano, P.R., De Luca, A.: Dynamic identification of the franka emika panda robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robot. Automation Lett. 4(4), 4147–4154 (2019)

    Article  Google Scholar 

  31. Beeson, P., Ames, B.: TRAC-IK: An open-source library for improved solving of generic inverse kinematics. In: Proceeding of IEEE/RAS International Conference on Humanoid Robots, Seoul, South Korea, pp. 928–935 (2015)

    Google Scholar 

  32. Liu, X., Li, Z., Pan Y.: Preliminary evaluation of composite learning tracking control on 7-DoF collaborative robots. In: IFAC Conference on Modelling, Identification and Control of Nonlinear Systems, Tokyo, Japan, pp. 1–6 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Guangdong Pearl River Talent Program of China under Grant No. 2019QN01X154, and in part by the Fundamental Research Funds for the Central Universities of China under Grant No. 19lgzd40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Li, Z., Pan, Y. (2021). Experiments of Composite Learning Admittance Control on 7-DoF Collaborative Robots. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics