Skip to main content

Enhanced Admittance Control for Time-Varying Force Tracking of Robots in Unknown Environment

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

  • 3684 Accesses

Abstract

In this paper, we introduce admittance control as an approach to control the physical interaction between robot and environment, and propose an enhanced admittance controller (EAC) framework with a well-designed control scheme that improves the system response while possessing the ability to suppress transient force overshoot and maintain steady-state force tracking. Within this framework, we analyze the pre-fuzzy PID, environmental parameter estimation, computed torque control, and propose a time-varying force control theory analysis based on the traditional target admittance model, and introduce an adaptive algorithm to compensate the environmental uncertainty, and verify the stability of the system based on the Routh criterion and Lyapunov equation. Finally, simulations are performed to verify the proposed control scheme in terms of system response, transient and steady-state force overshoot, and steady-state force tracking. Finally, simulations are performed to verify the effectiveness of the proposed control scheme in terms of system response, transient and steady-state force control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, F., Zhao, H., Li, D.: Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot. Comput. Integr. Manuf. 57, 391–403 (2019). https://doi.org/10.1016/j.rcim.2018.12.019

    Article  Google Scholar 

  2. Gracia, L., Solanes, J.E., Muñoz-Benavent, P.: Human-robot collaboration for surface treatment tasks. Interact. Stud. Soc. Behav. Commun. Biol. Artif. Syst. 20(1), 148–184 (2019). https://doi.org/10.1075/is.18010.gra

    Article  Google Scholar 

  3. Yao, B., Zhou, Z., Wang, L.: Sensorless and adaptive admittance control of industrial robot in physical human−robot interaction. Robot. Comput. Integrat. Manuf. 51, 158–168 (2018). https://doi.org/10.1016/j.rcim.2017.12.004

    Article  Google Scholar 

  4. Ji, W., Wang, L.: Industrial robotic machining: a review. Int. J. Adv. Manuf. Technol. 103(1–4), 1239–1255 (2019). https://doi.org/10.1007/s00170-019-03403-z

    Article  Google Scholar 

  5. Park, H., Park, J., Lee, D.-H.: Compliance-based robotic peg-in-hole assembly strategy without force feedback. IEEE Trans. Indust. Electron. 64(8), 6299–6309 (2017). https://doi.org/10.1109/tie.2017.2682002

    Article  Google Scholar 

  6. Yuen, S.G., Perrin, D.P., Vasilyev, N.V.: Force tracking with feed-forward motion estimation for beating heart surgery. IEEE Trans. Rob. 26(5), 888–896 (2010). https://doi.org/10.1109/TRO.2010.2053734

    Article  Google Scholar 

  7. Ferraguti, F., Talignani Landi, C., Sabattini, L.: A variable admittance control strategy for stable physical human–robot interaction. Int. J. Robot. Res. 38(6), 747–765 (2019). doi: https://doi.org/10.1177/0278364919840415

  8. Keemink, A.Q.L., van der Kooij, H., Stienen, A.H.A.: Admittance control for physical human–robot interaction. Int. J. Robot. Res. 37(11), 1421–1444 (2018). https://doi.org/10.1177/0278364918768950

    Article  Google Scholar 

  9. Solanes, J.E., Gracia, L., Muñoz-Benavent, P.: Adaptive robust control and admittance control for contact-driven robotic surface conditioning. Robot. Comput.-Integrat. Manuf. 54, 115–132 (2018). https://doi.org/10.1016/j.rcim.2018.05.003

    Article  Google Scholar 

  10. Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Contr. 103(2), 126–133 (1981). https://doi.org/10.1115/1.3139652

    Article  Google Scholar 

  11. Hogan, N.: Impedance control: an approach to manipulation: Part I—Theory. J. Dyn. Syst. Meas. Contr. 107(1), 1–7 (1985). https://doi.org/10.1115/1.3140701

    Article  MATH  Google Scholar 

  12. Hogan, N.: Impedance control: an approach to manipulation: Part II—Implementation. J. Dyn. Syst. Meas. Contr. 107(1), 8–16 (1985). https://doi.org/10.1115/1.3140702

    Article  MATH  Google Scholar 

  13. Hogan, N.: Impedance control: an approach to manipulation: Part III—Applications. J. Dyn. Syst. Meas. Contr. 107(1), 17–24 (1985). https://doi.org/10.1115/1.3140713

    Article  MATH  Google Scholar 

  14. Mason, M.T.: Compliance and force control for computer controlled manipulators. IEEE Trans. Syst. Man Cybern. 11(6), 418–432 (1981). https://doi.org/10.1109/tsmc.1981.4308708

    Article  Google Scholar 

  15. Wang, H., Xie, Y.: Adaptive Jacobian force/position tracking control of robotic manipulators in compliant contact with an uncertain surface. Adv. Robot. 23(1–2), 165–183 (2009). https://doi.org/10.1163/156855308X392726

    Article  Google Scholar 

  16. Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Robot. Res. 16(1), 97–117 (1997). https://doi.org/10.1177/027836499701600107

    Article  Google Scholar 

  17. Ueberle, M., Mock, N., Buss, M.: VISHARD10, a novel hyper-redundant haptic interface. In: Proceedings - 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS, 2004, pp. 58–65. doi: https://doi.org/10.1109/HAPTIC.2004.1287178. doi: https://doi.org/10.1017/s026357479700057x.

  18. Cao, H., He, Y., Chen, X., Liu, Z.: Control of adaptive switching in the sensing-executing mode used to mitigate collision in robot force control. J. Dyn. Syst. Measur. Control 141(11) (2019). doi: https://doi.org/10.1115/1.4043917

  19. Sciavicco, B.S.L.: Modelling and Control of Robot Manipulators (2012)

    Google Scholar 

  20. Ketelhut, M., Kolditz, M., Göll, F., Braunstein, B.: Admittance control of an industrial robot during resistance training. IFAC-PapersOnLine 52(19), 223–228 (2019). https://doi.org/10.1109/ACCESS.2019.2924696

    Article  Google Scholar 

  21. Xu, W., Cai, C., Yin, M.: Time-varying force tracking in impedance control. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 344–349 (2012). doi: https://doi.org/10.1109/TCST.2017.2739109

Download references

Acknowledgments

This research is supported by the key R&D project “Key Technology and Application Research of High-Power Direct Drive Spindle Unit for High-end CNC Lathe” of Chongqing Technology Innovation and Application Development Special Project (project number cstc2019jscx-fxydX0022).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., He, Y., Li, K., Zhao, X. (2021). Enhanced Admittance Control for Time-Varying Force Tracking of Robots in Unknown Environment. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics