Skip to main content

Research on Short Term Power Load Forecasting Combining CNN and LSTM Networks

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

Abstract

Accurate prediction of power load plays an important role in the optimal scheduling of resources. However, the lack of power data in the traditional automatic acquisition system inevitably affects the subsequent data analysis. With the help of on-site real-time monitoring, the integrity of data collection can be ensured. In this paper, a load forecasting model based on the fusion of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) is proposed. Through training the historical data collected by the on-duty robot, a complete network model is constructed. The network extracts the effective sequence features of the input data through CNN network, and gets the load prediction results through LSTM network. The experimental results show that the fusion network of CNN and LSTM obtains higher prediction accuracy than present algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yanhua, Z., Jinquan, W., Youhuai, T., et al.: Digital technology of low-voltage distribution cabinet. Electr. Power Autom. Equipment 33(03), 158–161 (2013)

    Google Scholar 

  2. Tao Zhiyuan, X., Weiqing, W.S., Qinghua, L.: Path planning applied on a field robot for hot-line working in 110 kV intelligent substation. Mach. Des. Res. 34(01), 17–25 (2018)

    Google Scholar 

  3. Shibao, X., Shicheng, L., Qinghua, L.: System development and analysis of the live-line maintenance tracked mobile robot navigation system. Mach. Des. Res. 33(03), 26–34 (2017)

    Google Scholar 

  4. Lixia, Z., Zhicheng, Y., Jingsheng, Z.: No Counterweight underactuated cable inspection robot study and test quasi-zero stiffness isolator. Mach. Des. Res. 33(03), 30–34 (2017)

    Google Scholar 

  5. Qing, Z., Xinping, L., Xiaolong, Z., et al.: Design and research of the mechanical structure for power transmission lines inspection robot. Mach. Des. Res. 32(04), 46–49 (2016)

    Google Scholar 

  6. Wanhua, L., Hong, C., Kun, G., et al.: Research on electrical load prediction based on random forest algo-rithm. Comput. Eng. Appl. 52(23), 236–243 (2016)

    Google Scholar 

  7. Pai, P.-F., Hong, W.-C.: Support vector machines with simulated annealing algorithms in electricity load forecasting. Pergamon 46(17), 2669–2688 (2005)

    Google Scholar 

  8. Xiaofei, Z., Juncheng, G., Yubao, S.: Abnormal electricity behavior recognition of graph regularization nonlinear ridge regression model. Comput. Eng. 44(06), 8–12 (2018)

    Google Scholar 

  9. Kaytez, F.: A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy, 197 (2020)

    Google Scholar 

  10. Khodaparast, J., Khederzadeh, M.: Least square and Kalman based methods for dynamic phasor estimation: a review. Prot. Control Mod. Power Syst. 2(2), 1–8 (2017)

    Article  Google Scholar 

  11. Ming, Z., Shulei, L., Liang, W., et al.: Wind power prediction model based on the combined optimization algorithm of ARMA model and BP neural networks. East China Electr. Power 41(02), 347–352 (2013)

    Google Scholar 

  12. Haitao, C., Jun, Y., Yingchun, S., et al.: Life prediction method of relay protection device based on could model and Markov Chain. Power Syst. Prot. Control 47(16), 94–100 (2019)

    Google Scholar 

  13. Zhang, W., Qin, J., Mei, F., et al.: Short-term power load forecasting using integrated methods based on long short-term memory. Sci. China (Technol. Sci.) 63(04), 614–624 (2020)

    Google Scholar 

  14. Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D, 404 (2020)

    Google Scholar 

  15. Zhang, Y., Ai, Q., Lin, L., et al.: A very short-term load forecasting method based on deep LSTM RNN at zone level. Power Syst. Technol. 43(06), 1884–1892 (2019)

    Google Scholar 

  16. Zhenyu, C., Jinbo, L., Chen, L., et al.: Ultra short-term power load forecasting based on combined LSTM-XGBoost model. Power Syst. Technol. 44(02), 614–620 (2020)

    Google Scholar 

  17. Bo, H., Xiao, P., Weichun, G., et al.: Typical period load curve fitting method based on IVMD-LSTM for improving the gridding of wind power. Renew. Energy Resour. 38(03), 366–372 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Science and Technology Project of State Grid Corporation Headquarters: “Research and Application Verification on Intelligent Cloud Robot for Distribution Station” (5700-202018266A-0-0-00).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, Y., Chen, M., Pan, F., Feng, L., Liang, Q. (2021). Research on Short Term Power Load Forecasting Combining CNN and LSTM Networks. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics