Abstract
The profile accuracy and surface quality of repaired blade are directly determined by the dimension restore, which has a far-reaching impact on the service performance and fatigue life of engine after maintenance. In this paper, the robot belt grinding method for repairing blade is studied. A flexible grinding method with variable stiffness is proposed to realize the rapid and accurate material removal and the improvement of the surface quality of the repaired blade. The method of model detection and processing of the repair sample is studied, and the machining accuracy of the grinding device is improved through robot operation calibration. Finally, the feasibility of the above method is verified by the grinding experiments of the samples of the profile repair, edge repair and blade tip repair. The grinding accuracy can reach 0.07 mm, the surface roughness less than Ra0.04.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rinaldi, C., Antonelli, G.: ENERGY. Epitaxial repair and in situ damage assessment for turbine blades. Proc. Inst. Mech. Eng. Part A: J. Power Energy 219(2), 93–99 (2005)
Tao, W., Huapeng, D., Hao, W., et al.: Virtual remanufacturing: cross-section curve reconstruction for repairing a tip-defective blade. Archiv. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229(17), 3141–3152 (2015)
Bi, G., Gasser, A.: Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing. Phys. Procedia 12, 402–409 (2011)
Thukaram, S.K.: Robot Based 3D Welding for Jet Engine Blade Repair and Rapid Prototyping of Small Components. University of Manitoba (2010)
Sutton, B.H.E., Thodla, R.: Correction to: heat treatment of alloy 718 made by additive manufacturing for oil and gas applications. JOM 71(6), 2137–2137 (2019)
Rosa, B., Mognol, P., Hascoët, J.-Y.: Modelling and optimization of laser polishing of additive laser manufacturing surfaces. Rapid Prototyp. J. 22(6), 956–964 (2016)
Kim, U.S., Park, J.W.: High-quality surface finishing of industrial three-dimensional metal additive manufacturing using electrochemical polishing. Int. J. Precis. Eng. Manuf. Green Technol. 6(1), 11–21 (2019)
Łyczkowska, E., Szymczyk, P., Dybała, B., et al.: Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing. Archiv. Civil Mech. Eng. 14(4), 586–594 (2014)
Liu, W.D., Ao, S.S., Li, Y., et al.: Elimination of the over cut from a repaired turbine blade tip post-machined by electrochemical machining. J. Mater. Process. Technol. 231, 27–37 (2016)
Xiong, X., Zhang, H., Wang, G., et al.: Hybrid plasma deposition and milling for an aeroengine double helix integral impeller made of superalloy. Robot. Comput. Integr. Manuf. 26(4), 291–295 (2010)
Bagci, E.: Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: three case studies. Adv. Eng. Softw. 40(6), 407–418 (2009)
Yilmaz, O., Gindy, N., Gao, J.: A repair and overhaul methodology for aeroengine components. Robot. Comput. Integr. Manuf. 26(2), 190–201 (2010)
Wu, B., Wang, J., Zhang, Y., et al.: Adaptive location of repaired blade for multi-axis milling. J. Comput. Design Eng. 4, 4 (2015)
Huang, H., Zhou, L., Chen, X.Q., et al.: SMART robotic system for 3D profile turbine vane airfoil repair. Int. J. Adv. Manuf. Technol. 21(4), 275–283 (2003)
Huang, H., Gong, Z.M., Chen, X.Q., et al.: Robotic grinding and polishing for turbine-vane overhaul. J. Mater. Process. Technol. 127(2), 140–145 (2002)
Whitton, S.: Adaptive robot grinding improves turbine blade repair. Indust. Robot. Int. J. Robot. Res. Appl. 30(4), 370–372 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, X., Lv, C., Zou, L. (2021). Investigation of Robotic Belt Grinding Methods Used for Dimension Restore of Repaired Blades. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_67
Download citation
DOI: https://doi.org/10.1007/978-3-030-89098-8_67
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89097-1
Online ISBN: 978-3-030-89098-8
eBook Packages: Computer ScienceComputer Science (R0)