Skip to main content

Object-Centric Anomaly Detection Using Memory Augmentation

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Abstract

Video anomaly detection is becoming of increased interest as surveillance is becoming more widespread. We propose an object-centric method with memory augmentation (ObjMemAE) for video anomaly detection. Recently, object-centric approaches is seen at the top of the leaderboards, where we take the novel approach of combining an object-centric approach with memory augmentation using a long term memory bank storing prototypical objects. The memory module also allows the use of additional object-centric features. The proposed method is shown to outperform the baseline by 4.5%, with an AUC score of 98.3% on the UCSD-Ped2 dataset achieving state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  2. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  3. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 733–742 (2016)

    Google Scholar 

  4. Ionescu, R.T., Khan, F.S., Georgescu, M.I., Shao, L.: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7842–7851 (2019)

    Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  6. Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4(2), 36 (2018)

    Article  Google Scholar 

  7. Lin, T.Y., et al.: Microsoft coco: common objects in context (2015)

    Google Scholar 

  8. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018)

    Google Scholar 

  9. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in Matlab. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2720–2727 (2013)

    Google Scholar 

  10. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional LSTM for anomaly detection. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 439–444. IEEE (2017)

    Google Scholar 

  11. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 341–349 (2017)

    Google Scholar 

  12. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1975–1981. IEEE (2010)

    Google Scholar 

  13. Nguyen, T.N., Meunier, J.: Anomaly detection in video sequence with appearance-motion correspondence. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1273–1283 (2019)

    Google Scholar 

  14. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14372–14381 (2020)

    Google Scholar 

  15. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)

    Google Scholar 

  16. Ramachandra, B., Jones, M., Vatsavai, R.: Learning a distance function with a Siamese network to localize anomalies in videos. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 2598–2607 (2020)

    Google Scholar 

  17. Ramachandra, B., Jones, M., Vatsavai, R.R.: A survey of single-scene video anomaly detection. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://ieeexplore.ieee.org/document/9271895

  18. Ravanbakhsh, M., Nabi, M., Sangineto, E., Marcenaro, L., Regazzoni, C., Sebe, N.: Abnormal event detection in videos using generative adversarial nets. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1577–1581. IEEE (2017)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Scaled-YOLOv4: scaling cross stage partial network (2021)

    Google Scholar 

  21. Wu, C.Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., Girshick, R.: Long-term feature banks for detailed video understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 284–293 (2019)

    Google Scholar 

  22. Yang, Y., Xiang, S., Zhang, R.: Improving unsupervised anomaly localization by applying multi-scale memories to autoencoders. arXiv preprint arXiv:2012.11113 (2020)

  23. Yu, G., et al.: Cloze test helps: effective video anomaly detection via learning to complete video events. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 583–591 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Milestone Research Programme at Aalborg University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Velling Dueholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dueholm, J.V., Nasrollahi, K., Moeslund, T.B. (2021). Object-Centric Anomaly Detection Using Memory Augmentation. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13052. Springer, Cham. https://doi.org/10.1007/978-3-030-89128-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89128-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89127-5

  • Online ISBN: 978-3-030-89128-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics