Skip to main content

Learning to Navigate in the Gaussian Mixture Surface

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Abstract

In the last years, deep learning models have achieved remarkable generalization capability on computer vision tasks, obtaining excellent results in fine-grained classification problems. Sophisticated approaches based-on discriminative feature learning via patches have been proposed in the literature, boosting the model performances and achieving the state-of-the-art over well-known datasets. Cross-Entropy (CE) loss function is commonly used to enhance the discriminative power of the deep learned features, encouraging the separability between the classes. However, observing the activation map generated by these models in the hidden layer, we realize that many image regions with low discriminative content have a high activation response and this could lead to misclassifications. To address this problem, we propose a loss function called Gaussian Mixture Centers (GMC) loss, leveraging on the idea that data follow multiple unimodal distributions. We aim to reduce variances considering many centers per class, using the information from the hidden layers of a deep model, and decreasing the high response from the unnecessary areas of images detected along the baselines. Using jointly CE and GMC loss, we improve the learning generalization model overcoming the performance of the baselines in several use cases. We show the effectiveness of our approach by carrying out experiments over CUB-200-2011, FGVC-Aircraft, Stanford-Dogs benchmarks, and considering the most recent Convolutional Neural Network (CNN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Améndola, C., Engström, A., Haase, C.: Maximum number of modes of gaussian mixtures. Inf. Infer. J. IMA (2020)

    Google Scholar 

  2. Branson, S., Van Horn, G., Belongie, S., Perona, P.: Bird species categorization using pose normalized deep convolutional nets (2014)

    Google Scholar 

  3. Cai, S., et al.: Higher-order integration of hierarchical convolutional activations for fine-grained visual categorization. In: ICCV (2017)

    Google Scholar 

  4. Chen, T., et al.: Knowledge-embedded representation learning for fine-grained image recognition. In: Conference on Artificial Intelligence (2018)

    Google Scholar 

  5. Chen, W., et al.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: CVPR (2017)

    Google Scholar 

  6. Deng, J., et al.: Arcface: Additive angular margin loss for deep face recognition. In: CVPR (2019)

    Google Scholar 

  7. Ding, Y., et al.: Selective sparse sampling for fine-grained image recognition. In: IEEE/CVF (2019)

    Google Scholar 

  8. Dubey, A., et al.: Maximum-entropy fine grained classification. In: NIPS (2018)

    Google Scholar 

  9. Frosst, N., Papernot, N., Hinton, G.E.: Analyzing and improving representations with the soft nearest neighbor loss. In: ICML (2019)

    Google Scholar 

  10. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: CVPR (2017)

    Google Scholar 

  11. Ghosh, P., Davis, L.S.: Understanding center loss based network for image retrieval with few training data. In: ECCV (2018)

    Google Scholar 

  12. He, X., et al.: Triplet-center loss for multi-view 3d object retrieval. In: CVPR (2018)

    Google Scholar 

  13. Hennig, C., Meila, M., Murtagh, F., Rocci, R.: Handbook of cluster analysis (2015)

    Google Scholar 

  14. Khosla, A., et al.: Novel dataset for fine-grained image categorization: stanford dogs. In: CVPR

    Google Scholar 

  15. Kulesza, A., Jiang, N., Singh, S.: Low-rank spectral learning with weighted loss functions. In: AISTATS (2015)

    Google Scholar 

  16. La Grassa, R., et al.: Learning to navigate in the gaussian mixturesurface. https://gitlab.com/artelabsuper/gmc_loss

  17. La Grassa, R., et al.: \(\sigma ^{2}\) r loss: a weighted loss by multiplicative factors using sigmoidal functions. arXiv preprint arXiv:2009.08796 (2020)

  18. LeCun, Y.A., et al.: Efficient backprop. In: Neural networks (2012)

    Google Scholar 

  19. Li, P., Xie, J., Wang, Q., Gao, Z.: Towards faster training of global covariance pooling networks by iterative matrix square root normalization. In: CVPR (2018)

    Google Scholar 

  20. Li, Z., et al.: Dynamic computational time for visual attention. In: ICCV (2017)

    Google Scholar 

  21. Liu, W., et al.: Sphereface: deep hypersphere embedding for face recognition. In: CVPR (2017)

    Google Scholar 

  22. Luo, W., Zhang, H., Li, J., Wei, X.S.: Learning semantically enhanced feature for fine-grained image classification. IEEE Signal Proc. Lett. 27, 1545-9 (2020)

    Google Scholar 

  23. Luo, W., et al.: Cross-x learning for fine-grained visual categorization. In: ICCV (2019)

    Google Scholar 

  24. Maji, S., et al.: Fine-grained visual classification of aircraft Tech Rep (2013)

    Google Scholar 

  25. Peng, Y., He, X., Zhao, J.: Object-part attention model for fine-grained image classification. IEEE Transactions on Image Processing (2017)

    Google Scholar 

  26. Qi, C., Su, F.: Contrastive-center loss for deep neural networks. In: ICIP (2017)

    Google Scholar 

  27. Salakhutdinov, R., Hinton, G.: Learning a nonlinear embedding by preserving class neighbourhood structure. In: AISTATS (2007)

    Google Scholar 

  28. Sun, G., et al.: Fine-grained recognition: accounting for subtle differences between similar classes. In: Conference on Artificial Intelligence (2020)

    Google Scholar 

  29. Theodoridis, S., et al.: Pattern recognition. IEEE Trans. Neural Netw. (2008)

    Google Scholar 

  30. Wah, C., et al.: The Caltech-UCSD birds-200-2011 Dataset tech rep (2011)

    Google Scholar 

  31. Wan, W., Zhong, Y., Li, T., Chen, J.: Rethinking feature distribution for loss functions in image classification. In: CVPR (2018)

    Google Scholar 

  32. Wang, M., Deng, W.: Deep face recognition. Neurocomputing 393, 1-14 (2020)

    Google Scholar 

  33. Wang, Q., et al.: A comprehensive survey of loss functions in machine learning. Annals of Data Sci. (2020)

    Google Scholar 

  34. Wang, Y., et al.: Learning a discriminative filter bank within a cnn for fine-grained recognition. In: CVPR (2018)

    Google Scholar 

  35. Wang, Z., et al.: Weakly supervised fine-grained image classification via correlation-guided discriminative learning. In: ACM-MM (2019)

    Google Scholar 

  36. Wei, X.S., et al.: Mask-cnn: localizing parts and selecting descriptors for fine-grained bird species categorization. Pattern Recogn. (2018)

    Google Scholar 

  37. Wen, Y., et al.: A discriminative feature learning approach for deep face recognition. In: ECCV (2016)

    Google Scholar 

  38. Yang, Z., et al.: Learning to navigate for fine-grained classification. In: ECCV (2018)

    Google Scholar 

  39. Zheng, H., et al.: Learning rich part hierarchies with progressive attention networks for fine-grained image recognition. IEEE Trans. Image Process. 29,476-488 (2019)

    Google Scholar 

  40. Zheng, H., et al.: Looking for the devil in the details: learning trilinear attention sampling network for fine-grained image recognition. In: CVPR (2019)

    Google Scholar 

  41. Zhu, Y., et al.: Hetero-center loss for cross-modality person re-identification. Neurocomputing 386, 97-109 (2020)

    Google Scholar 

  42. Zhuang, P., Wang, Y., Qiao, Y.: Learning attentive pairwise interaction for fine-grained classification. In: AAAI (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo La Grassa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

La Grassa, R., Gallo, I., Vetro, C., Landro, N. (2021). Learning to Navigate in the Gaussian Mixture Surface. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13052. Springer, Cham. https://doi.org/10.1007/978-3-030-89128-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89128-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89127-5

  • Online ISBN: 978-3-030-89128-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics