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1 Department of Electrical and Computer Engineering
The University of New Mexico, Albuquerque, NM, USA.

{luis2sancheztapia, agsuper, javesparza, venkatesh369, pattichi}@unm.edu
2 Department of Language, Literacy, and Sociocultural Studies

The University of New Mexico, Albuquerque, NM, USA.
{sceledon, callopez}@unm.edu

Abstract. Speech recognition is very challenging in student learning
environments that are characterized by significant cross-talk and back-
ground noise. To address this problem, we present a bilingual speech
recognition system that uses an interactive video analysis system to esti-
mate the 3D speaker geometry for realistic audio simulations. We demon-
strate the use of our system in generating a complex audio dataset that
contains significant cross-talk and background noise that approximate
real-life classroom recordings. We then test our proposed system with
real-life recordings.
In terms of the distance of the speakers from the microphone, our interac-
tive video analysis system obtained a better average error rate of 10.83%
compared to 33.12% for a baseline approach. Our proposed system gave
an accuracy of 27.92% that is 1.5% better than Google Speech-to-text
on the same dataset. In terms of 9 important keywords, our approach
gave an average sensitivity of 38% compared to 24% for Google Speech-
to-text, while both methods maintained high average specificity of 90%
and 92%.
On average, sensitivity improved from 24% to 38% for our proposed
approach. On the other hand, specificity remained high for both methods
(90% to 92%).

Keywords: Speech Recognition · Projection Geometry · Bilingual ·
Video Processing.

1 Introduction

Human activity recognition can strongly benefit from the combined use of audio
and video data. More recently, audio processing has been used to identify visual
events [4], [9]. For our paper, we want to investigate the use of video data to
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Fig. 1: Example setup of a typical AOLME group interaction. Blue dots mark the
speaker position and the Yellow dot is assumed to be at the center of the table
(marked by red). Cross-talk is expected among speakers S0 to S3, background
noise is also captured by the microphone (green dots in the back). Under the
picture, we depict a sample of a transcript from the current session. Keywords
can be identified like ”zero”, ”one”, ”computer” and ”three” .

reconstruct the speaker geometry in 3D and then use this information to develop
a speaker recognition system. Our approach addresses the strong need to develop
a speech recognition system that can help transcribe student conversations from
video recordings of collaborative learning environments.

We present an example in Figure 1. In this example, a small group of stu-
dents is sitting around the table, using the keyboard to program the Raspberry
Pi. The video has been recorded as part of the Advancing Out-of-School Learn-
ing in Mathematics and Engineering (AOLME) after-school program [3]. The
speech recognition problem requires that we recognize what each of the students
is saying as shown in the transcription of Fig. 1. More specifically, the speaker ge-
ometry requires that we identify the 3D locations of the speakers (S0, S1, S2, S3)
with respect to the omnidirectional microphone placed on the center of the table.
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In Fig. 1, we also see several other speakers talking in the background (refer to
green dots). The students speak in both Spanish and English.

Student speech recognition in this environment is very challenging due to
cross-talk, background noise, and the use of multiple languages. Current deep
learning systems are hence ineffective in such environments. To address the issue,
we use the estimated 3D speaker geometry and video audio transcriptions to
generate a large, acoustic model based audio dataset that can be used to train a
bilingual speech recognition system for this collaborative learning environment.
As we demonstrate in this paper, although we train on synthetic datasets, we
are still able to match and slightly exceed state-of-the-art systems.

The current paper significantly extends our previous research on analyzing
such videos. More specifically, prior research has been focused on face and back
of the head detection in [16], [15], [14], [13] and [12], face recognition was also tar-
geted in [18]. Furthermore, authors in [6] provided an early approach to context-
based activity detection using deep learning. The research on video activity de-
tection was significantly extended in [7]. The object detection system developed
by [17] will be the baseline system for estimating 3D speaker geometry from the
AOLME videos. For completeness, we will also explain the approach in [17] in
our methodology.

The paper uses video object detection and projective geometry to locate
the 3D speaker geometry from still video frames. The 3D speaker geometry is
input to Pyroomacoustics ([10]) to simulate how the speakers will be recorded
by the omnidirectional microphone located on the center of the table. We use
the audio transcriptions with the AWS text-to-speech system to generate the
ground truth audio datasets for training our speech recognition system. The
proposed approach obtained a 27.92% recognition rate on Spanish words that
was slightly better than Google Speech-to-text [1] at 26.12%. In addition, the
Bilingual Keyword Classifier obtained an average of 38% sensitivity on Spanish
Keywords.

The rest of the paper is organized as follows. We define the 3D speaker
geometry problem in section 2. We then describe the underlying methods in
section 3. Results are given in section 4. We then provide concluding remarks in
section 5.

2 3D Speaker Geometry Estimation

We use projective geometry to estimate 3D coordinates from still image frames.
Our basic assumption is to use cross-ratios along the projections of 3D lines to
estimate 3D distances. We begin by assuming the basic concept and showing
how to apply cross-ratios to define the problem for our videos.

We illustrate the concept of cross-ratios in Fig. 2 [2]. The basic assumption
is that we know the actual physical distances between three consecutive, co-
linear points A,B,C. In our example, let these distances be AB and BC. Then,
to estimate the distance to another point D along the same line, we use the
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Fig. 2: Physical distance estimation using cross-ratios.

cross-ratio R defined by [2]:

R =
AC

CB

/
AD

DB
=

AC ·BD

BC ·AD
=

(AB + BC) · (BC + CD)

BC · (AB + BC + CD)
(1)

where CD is the physical distance to be estimated. To estimate CD from equa-
tion (1), we first estimate the ratio R using pixel ratios of AD/DB. Then, we
substitute the value for R and solve for CD.

To estimate the 3D locations of the speakers using cross-ratios, we will first
need to estimate distances along 3D planes where our colinear points lie. In
our example of Fig. 2, we assume that we know the physical dimensions of the
keyboard (given as distance AC). Then, we estimate the midpoint B of the
keyboard. We then assume that the keyboard is parallel to the sides of the table
(1 to 2 or 3 to 4), and estimate the distance CD to the edge of the table using
cross-ratios. Unfortunately, we cannot use the side of the keyboard to estimate
the width of table that is depicted as a near-horizontal line in Fig. 1. This is
because the keyboard side, compared against the table width is too small, and
estimation can be very inaccurate.

We define all of the points that are needed to estimate the 3D speaker ge-
ometry in Fig. 3. Here, we estimate all physical distances along with the table
defined by points 1, 2, 3, 4 using cross-ratios. The basic idea is to define a 2D
grid on the the table that is defined through the intersection of lines parallel to
the keyboard (points 5, 6, 7, 8) and the computer monitor (9, 10, 11, 12, 13). Here,
we assume monitor points 8, 9, 10 lie on the table to eliminate the need to map
these points to the table surface. These lines are also assumed to be parallel to
the corresponding sides of the table.
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(a)

(b)

Fig. 3: Speaker geometry estimation setup.

Since the table is not always fully visible, we also extend the estimated depth
of the table (points 1 to 2) by 5% to account for mild occlusion. Here, we note
that the size of the table is needed because we assume that the microphone is
located in the center of the table.

Similarly, we define 3D planes associated with each speaker (assumed to be
about 4 inches away from the table edge) and assume that the mouths and
hands lie on the same 3D plane that is orthogonal to the table. In terms of
object recognition, we require hand detection, head detection as depicted in
Figure 3(b).

We refer to [5] as a base for the assumptions at building the system of projec-
tions of parallel lines. We plan to test at the real scenario from AOLME videos
(around 1000 hours).
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3 Methodology

We summarize our methodology in Figure 4. Our 3D speaker geometry estima-
tion requires detection of keyboard, hands and monitor. We based the detection
on [17] with added post processing to detect necessary features to establish 3D
geometry. We provide more details on our object detection methods in section
3.1.

Through the use of an interactive system, the users select specific frames,
select the table corners and corners from the detected keyboard and monitor.
Then, out system uses cross-ratios to reconstruct the 3D speaker geometry as
summarized in section 2. As shown in the bottom branch of Figure 4(a), the
AOLME transcripts are pre-processed to serve as input to the speech synthe-
sis module. We then use the reconstructed 3D geometry and the synthesized
dialogues to provide an acoustic-based generation of the audio dataset. We in-
put the 3D speaker and microphone geometry, and synthesized speech into our
acoustic simulation framework based on Pyroomacoustics [10]. The result is the
acoustics-based simulated dataset for training our bilingual speech recognition
system.

The speech recognition system is shown in Figure 4(b). The system is trained
using the generated audio dataset. We provide more details of our speech recog-
nition system in section 3.2.

3.1 Object Detection

As shown in Fig. 3, we require detection of the keyboard and monitor in order
to estimate the location of the speakers with respect to the table. Furthermore,
to estimate the 3D locations of the speaker’s mouths, we also assume that their
hands and mouths are on the same 3D plane and further require hand and head
detection. Here, we are only interested in hands that are located near the table
as shown in Fig. 3.

We next summarize the methods that we will use to detect each object. For
head detection, we use the latest version of YOLO [8] pre-trained on the crowd
human data set for head detection [11]. To restrict head detection within the
current student group, we use a minimum area threshold that successfully rejects
smaller faces of people outside the group. For detecting hands, monitors, and
keyboards, we use faster R-CNN pre-trained on the COCO dataset. The results
of faster R-CNN are post-processed using clustering, time-projections (adding
detections through time), and small area removal to remove distant hands (see
[17] for details). Among the hand detections, we then manually select hands
that lie on the table. Furthermore, we manually select the edges of the Table,
the monitor, and the keyboard.

We assume that we can learn the scales, number of pixels per inch for each
speaker using manual measurements during training. Later, we will look at es-
timating the scales for each image. Here, we note that our assumption is very
restrictive. It does not account for strong scale variations when the speakers
move to new positions not reflected in the training set.
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(a) Acoustics-based dataset generator based on 3D speaker geometry.

(b) Speech recognition system.

Fig. 4: Bilingual speech recognition system using 3D speaker geometry estimated
from the video dataset.

3.2 Speech recognition system

We summarize the speech recognition system in Fig. 4(b). The acoustic-based
generated dataset is used to train a phoneme-based recognition network com-
posed of a 2D CNN (a single layer of 8 filters of size 3×3 with stride=2) processing
Mel-spectrograms, a two-layer bi-directional GRUs with 64 units per layer, and
a fully connected layer with an output for each phoneme. The system generates
a sequence of phonemes characters that are post-processed by a bilingual word
classifier based on minimum distance.

4 Results

We first summarize results from 3D speaker geometry estimation using a baseline
approach and our proposed methods. We then summarize our results for speech
recognition system using the 3D speaker geometry.
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Table 1: Results for 3D speaker geometry estimation. The error is given as a
percentage of the distance to the microphone. All distances are given in inches.

Speaker Ground Truth
Our Method Baseline
Estimation Error Estimation Error

S0 36.70 34.16 6.92 % 19.74 46.21 %
S1 35.59 41.27 15.96 % 24.32 31.67 %
S2 42.12 43.88 4.18 % 27.79 34.02 %
S3 34.99 29.29 16.29 % 27.79 20.58 %

Average 37.35 37.15 10.84 % 24.91 33.12 %

We define a baseline approach that does not require projective geometry
or any object detection method. Assuming the keyboard and table corners are
given, we assume that speakers sit around the table, equidistant from each other.

Our proposed approach performed significantly better. We present a sum-
mary of our estimates for Fig. 3 in Table 1. Our error ranges from 7% to 16%.
The largest source of error comes from our estimation of the scale for each speaker
(number of pixels per inch). As mentioned earlier, in future work, we will work
on estimating the scale directly from each image. Overall, our interactive system
gave a reduced error of 10.84% compared to 33.12% for the baseline method. In
terms of the AOLME dataset, we present an example of object detection in Fig.
5. Overall we note that our proposed approach required the combination of dif-
ferent object detections from different video frames to establish the 3D speaker
geometry.

Fig. 5: Object detection for 3D speaker geometry estimation. We use blue bound-
ing boxes for head detection, orange bounding boxes for hand detection, and
purple bounding boxes for keyboard detection.
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Table 2: Keyword recognition results. Here, we note that our system does not
recognize accents.

Our system Google Speech-to-Text
Keywords Sensitivity Specificity Sensitivity Specificity

uno 0.50 0.95 0.13 1.00
dos 0.24 0.91 0.06 1.00
tres 0.63 0.92 0.00 1.00
cuatro 0.30 0.99 0.00 1.00
cinco 0.25 0.99 0.23 1.00
cero 0.36 0.93 0.00 1.00
computadora 0.25 0.99 0.25 1.00
numero 0.27 0.97 0.45 1.00
Others 0.65 0.67 1.00 0.13

Average 0.38 0.92 0.24 0.90

The output of 3D speaker geometry system is the complex simulated audio
dataset, used to train the speech recognition system. The training dataset was
generated using audio transcriptions of 720 minutes extracted from 54 video
sessions, and a typical AOLME 3D speaker geometry. For testing, we selected
517 sentences from unseen video sessions. We then assessed the character error
rate for recognizing the 517 sentences. For this test, our proposed approach gave
an accuracy of 27.92 % compared to 26.12% by Google speech-to-text.

We also present comparative results for the recognition of 9 Spanish keywords
that were used in the number representations lessons. We summarize our results
in terms of sensitivity and specificity as given in Table 2. From the results, it
is clear that Google Speech-to-text fails to detect any instances of tres, cuatro,
and cero. Overall, Google Speech-to-text is insensitive to the target keywords,
it is prone to discard noisy samples as ’Others’. By comparison, our proposed
method is much better at detecting our targeted keywords because it will try to
classify even the noisy samples. On average, sensitivity improved from 24% to
38% for our proposed approach. On the other hand, specificity remained high
for both methods (90% to 92%).

Our proposed approach produces more false positives and fewer false nega-
tives than Google Speech-to-text. Hence, in terms of using our method, we note
that the users would have to reject our false positive detections. On the other
hand, Google Speech-to-text requires noise-free examples and fails to detect im-
portant AOLME type keywords (e.g., tres, cuatro, and cero).

5 Conclusions and Future Work

We presented an interactive system for estimating 3D speaker geometries from
a single-camera video recording. We then used a typical 3D speaker geome-
try based on AOLME videos to generate a complex, acoustics-based, simulated
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dataset based on 11.66 hours of audio dataset. Then, when tested on actual au-
dio datasets, the proposed system slightly outperformed Google Speech-to-text.
Ultimately, the detection of meaningful keywords can be used by educational
researchers to identify moments of interest for further analysis.

For future work, we are currently developing multi-objective optimization
methods for improving our sensitivity while maintaining high specificity.
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3. Celedón-Pattichis, S., LópezLeiva, C.A., Pattichis, M.S., Llamocca, D.: An
interdisciplinary collaboration between computer engineering and mathemat-
ics/bilingual education to develop a curriculum for underrepresented middle
school students. Cultural Studies of Science Education 8(4), 873–887 (Dec 2013),
https://doi.org/10.1007/s11422-013-9516-5”

4. Ephrat, A., Mosseri, I., Lang, O., Dekel, T., Wilson, K., Hassidim, A., Freeman,
W.T., Rubinstein, M.: Looking to listen at the cocktail party. ACM Transactions
on Graphics (2018)

5. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, ISBN: 0521540518, second edn. (2004)

6. Jacoby, A.R., Pattichis, M.S., Celedón-Pattichis, S., LópezLeiva, C.: Context-
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