Skip to main content

Bearing Fault Diagnosis Based on Attentional Multi-scale CNN

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2021)

Abstract

Bearing is an indispensable component of industrial production equipment. The health status of bearing affects the production efficiency of equipment, so it is necessary to detect the health status of bearing in real time. In this paper, a multi-scale feature fusion convolutional neural network with attention mechanism (AMMNet) is proposed for bearing fault diagnosis. Firstly, different scale shallow features of the input signal are extracted by parallel convolutional layers with different kernel sizes. Then, the shallow features are sent to the feature fusion module based on channel attention mechanism. After that, the fused features are fed to the deep feature extractor. Finally, the bearing fault type is identified by the classifier. We introduce a novel dropout mechanism to the input signal to improve the generalization ability of the network. Experiments show that the proposed method has high stability and generalization ability. It can not only achieve high average accuracy in fixed load environment, but also has higher recognition accuracy and better stability than some intelligent algorithms in variable load conditions.

Supported by the National Natural Science Foundation of China under Grant U20A20201 and the Shandong Provincial Key Research and Development Program under Grant 2019JZZY010441.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Chen, X., Zhang, B., Gao, D.: Bearing fault diagnosis base on multi-scale CNN and LSTM model. J. Intell. Manuf. 1–17 (2020)

    Google Scholar 

  3. Cocconcelli, M., Zimroz, R., Rubini, R., Bartelmus, W.: STFT based approach for ball bearing fault detection in a varying speed motor. In: Fakhfakh, T., Bartelmus, W., Chaari, F., Zimroz, R., Haddar, M. (eds.) Condition Monitoring of Machinery in Non-Stationary Operations, pp. 41–50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28768-8_5

    Chapter  Google Scholar 

  4. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  5. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  6. Jia, F., Lei, Y., Lin, J., Zhou, X., Lu, N.: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72, 303–315 (2016)

    Article  Google Scholar 

  7. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016)

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  10. Li, H., Lian, X., Guo, C., Zhao, P.: Investigation on early fault classification for rolling element bearing based on the optimal frequency band determination. J. Intell. Manuf. 26(1), 189–198 (2013). https://doi.org/10.1007/s10845-013-0772-8

    Article  Google Scholar 

  11. Liang, M., Cao, P., Tang, J.: Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network. Int. J. Adv. Manuf. Technol. (1), 819–831 (2020). https://doi.org/10.1007/s00170-020-06401-8

  12. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Sharma, R., Kumar, A., Kankar, P.K.: Ball bearing fault diagnosis using continuous wavelet transforms with modern algebraic function. In: Babu, B.V., et al. (eds.) Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012. AISC, vol. 236, pp. 313–322. Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1602-5_35

    Chapter  Google Scholar 

  15. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Wang, D., Guo, Q., Song, Y., Gao, S., Li, Y.: Application of multiscale learning neural network based on CNN in bearing fault diagnosis. J. Signal Process. Syst. 91(10), 1205–1217 (2019)

    Article  Google Scholar 

  17. Wang, Y., Qin, Y., Zhao, X., Zhang, S., Cheng, X.: Bearing fault diagnosis method based on graph Fourier transform and C4.5 decision tree. In: Qin, Y., Jia, L., Liu, B., Liu, Z., Diao, L., An, M. (eds.) EITRT 2019. LNEE, vol. 639, pp. 697–705. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2866-8_66

    Chapter  Google Scholar 

  18. Zhang, C., et al.: Rolling element bearing fault diagnosis based on the wavelet packet transform and time-delay correlation demodulation analysis. In: Ball, A., Gelman, L., Rao, B.K.N. (eds.) Advances in Asset Management and Condition Monitoring. SIST, vol. 166, pp. 1195–1203. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57745-2_98

    Chapter  Google Scholar 

  19. Zhang, S., Zhang, S., Wang, B., Habetler, T.G.: Deep learning algorithms for bearing fault diagnosticsx–a comprehensive review. IEEE Access 8, 29857–29881 (2020)

    Article  Google Scholar 

  20. Zhang, W., Peng, G., Li, C.: Rolling element bearings fault intelligent diagnosis based on convolutional neural networks using raw sensing signal. In: Advances in Intelligent Information Hiding and Multimedia Signal Processing. SIST, vol. 64, pp. 77–84. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50212-0_10

    Chapter  Google Scholar 

  21. Zhang, W., Peng, G., Li, C., Chen, Y., Zhang, Z.: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors 17(2), 425 (2017)

    Article  Google Scholar 

  22. Zhao, Q., et al.: M2Det: a single-shot object detector based on multi-level feature pyramid network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9259–9266 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xincheng Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, S., Liu, Y., Tian, X., Ma, L. (2021). Bearing Fault Diagnosis Based on Attentional Multi-scale CNN. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics