Abstract
This paper presents a novel 5-DOF deployable robotic gripper for grasping large-scale unknown objects. This robotic gripper is composed of four fingers and a single-mobility base mechanism, and each finger is made up of a serial of basic modules to conveniently store and transport. First, the mechanism design of the robotic gripper is briefly introduced. By special revolute joint of the scissor-shaped element, the fingers can form a certainly grasping angle when the robotic gripper conducts deployment-motion. Second, kinematic analysis is conducted to generate a workspace and kinematic simulation for the robotic gripper, the result shows that the robotic gripper has quite large reachable workspace. Dynamic analysis is then performed based on Lagrange dynamic equation, which is of great significance for further control and optimization. Third, a group of grasping simulations are performed with a variety of objects to prove the shape adaptability, and the results show that the robotic gripper has excellent grasping performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ryuta, O., Kenji, T.: Grasp and dexterous manipulation of multi-fingered robotic hands: a review from a control view point. Adv. Robot. 31(19–20), 1030–1050 (2017). https://doi.org/10.1080/01691864.2017.1365011
Romdhane, L.: Design and analysis of a hybrid serial-parallel manipulator. Mech. Mach. Theory 34(7), 1037–1055 (1999)
Bo, H.: Formulation of unified Jacobian for serial-parallel manipulators. Robot. Comput. Integr. Manuf. 30(5), 460–467 (2014). https://doi.org/10.1016/j.rcim.2014.03.001
Zhou, J.S., et al.: SCL-13: a 13-DOF soft robotic hand for dexterous grasping and in-hand manipulation. IEEE Robot. Autom. Lett. 3(4), 3379–3386 (2018)
Li, H.L., et al.: High-force soft pneumatic actuators based on novel casting method for robotic applications. Sens. Actuators A Phys. 306, 111957 (2020)
Gao, C.Q., et al.: Design of the truss-shaped deployable grasping mechanism using mobility bifurcation. Mech. Mach. Theory 139, 346–358 (2019)
Gao, C.Q., et al.: Design and analysis of a novel truss-shaped variable-stiffness deployable robotic gripper. IEEE Access 8, 112944–112956 (2020)
Gao, C.Q., et al.: Design and analysis of a novel deployable robotic gripper. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (Robio), pp. 481–486. Dali, Yunnan, China (2019 December)
Acknowledgment
This work was supported by the Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B090915001), and the Shenzhen Research and Development Program of China (Grant No. JCYJ20200109112818703).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Gao, C., Li, B., Hao, C., Peng, F., Wu, A. (2021). Kinematic and Dynamic Analysis of a Novel 5-DOF Multi-fingered Deployable Robotic Gripper. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-89134-3_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89133-6
Online ISBN: 978-3-030-89134-3
eBook Packages: Computer ScienceComputer Science (R0)