Skip to main content

Kinematic and Dynamic Analysis of a Novel 5-DOF Multi-fingered Deployable Robotic Gripper

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2021)

Abstract

This paper presents a novel 5-DOF deployable robotic gripper for grasping large-scale unknown objects. This robotic gripper is composed of four fingers and a single-mobility base mechanism, and each finger is made up of a serial of basic modules to conveniently store and transport. First, the mechanism design of the robotic gripper is briefly introduced. By special revolute joint of the scissor-shaped element, the fingers can form a certainly grasping angle when the robotic gripper conducts deployment-motion. Second, kinematic analysis is conducted to generate a workspace and kinematic simulation for the robotic gripper, the result shows that the robotic gripper has quite large reachable workspace. Dynamic analysis is then performed based on Lagrange dynamic equation, which is of great significance for further control and optimization. Third, a group of grasping simulations are performed with a variety of objects to prove the shape adaptability, and the results show that the robotic gripper has excellent grasping performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryuta, O., Kenji, T.: Grasp and dexterous manipulation of multi-fingered robotic hands: a review from a control view point. Adv. Robot. 31(19–20), 1030–1050 (2017). https://doi.org/10.1080/01691864.2017.1365011

    Article  Google Scholar 

  2. Romdhane, L.: Design and analysis of a hybrid serial-parallel manipulator. Mech. Mach. Theory 34(7), 1037–1055 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bo, H.: Formulation of unified Jacobian for serial-parallel manipulators. Robot. Comput. Integr. Manuf. 30(5), 460–467 (2014). https://doi.org/10.1016/j.rcim.2014.03.001

    Article  MathSciNet  Google Scholar 

  4. Zhou, J.S., et al.: SCL-13: a 13-DOF soft robotic hand for dexterous grasping and in-hand manipulation. IEEE Robot. Autom. Lett. 3(4), 3379–3386 (2018)

    Article  Google Scholar 

  5. Li, H.L., et al.: High-force soft pneumatic actuators based on novel casting method for robotic applications. Sens. Actuators A Phys. 306, 111957 (2020)

    Article  Google Scholar 

  6. Gao, C.Q., et al.: Design of the truss-shaped deployable grasping mechanism using mobility bifurcation. Mech. Mach. Theory 139, 346–358 (2019)

    Article  Google Scholar 

  7. Gao, C.Q., et al.: Design and analysis of a novel truss-shaped variable-stiffness deployable robotic gripper. IEEE Access 8, 112944–112956 (2020)

    Article  Google Scholar 

  8. Gao, C.Q., et al.: Design and analysis of a novel deployable robotic gripper. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (Robio), pp. 481–486. Dali, Yunnan, China (2019 December)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B090915001), and the Shenzhen Research and Development Program of China (Grant No. JCYJ20200109112818703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, C., Li, B., Hao, C., Peng, F., Wu, A. (2021). Kinematic and Dynamic Analysis of a Novel 5-DOF Multi-fingered Deployable Robotic Gripper. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics