Abstract
SLAM has achieved excellent achievement in the development of the past two decades and it has been extensively developed in robotics communities. The present binocular SLAM is based on the standard binocular camera to obtain images, and they have good positioning accuracy. However, it is necessary to detect and locate objects in the scene. In this article, we propose MF-SLAM that combines two different focal lengths into binocular vision, which overcome the shortcoming that standard binocular cameras cannot detect objects on long distance. Specifically, we improve the OpenCV stereo correction method and use stereo correction parameters to correct just ORB feature points, not to correct stereo images. Because of the difference of multi-focal length visual field, we also propose a feature extraction method that increases the same field of view and a feature matching method for multi-focal binocular camera to increase the number of feature matching. Experiments on the KITTI dataset show compatibility of MF-SLAM, and the RMSE of MF-SLAM decreases 5.17%. In our dataset, the RMSE of MF-SLAM is 18.58% lower than ORB-SLAM3, and the experimental results proved the accuracy of MF-SLAM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, F.R., Lu, E.L., Wang, Y., et al.: Efficient stereo visual simultaneous localization and mapping for an autonomous unmanned forklift in an unstructured warehouse. Appl. Sci. 10(2), 2292–2295 (2016)
Davison, A.J., Reid, I.D., Molton, N.D.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)
Pire, T., Fischer, T., Castro, G, et al. S-PTAM: stereo parallel tracking and mapping. Robot. Auton. Syst. 93, 27–42 (2017)
Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a Versatile and accurate monocular SLAM system IEEE Trans. Robot. 31, 1147–1163 (2015)
Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D Cameras. IEEE Trans. Robot. 33, 1255–1262 (2017)
Campos, C.., Elvira, R., Juan, J., RrodrÃguez, G.: ORB-SLAM3: an accurate open-source library for visual, visual-inertial and multi-map SLAM. arXiv:2007.1189-8 (2020)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. ECCV 2014, LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54
Forster, C., Zhang, Z., Gassner, M., et al.: SVO: Semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Robot. 33, 249–265 (2017)
Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Patt. Anal. Mach. Intell. J. 40, 611–625 (2017)
Schlegel, D., Colosi, M., Grisetti, G.: ProSLAM: graph SLAM from a programmer's perspective. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018, pp. 3833–3840. IEEE, Brisbane (2018)
Sumikura, S., Shibuya, M., Sakurada, K.: OpenVSLAM: a versatile visual SLAM framework. In: Proceedings of the 27th Acm International Conference on Multimedia, 21–25 October 2019, pp. 2292–2295. Assoc Computing Machinery, New York (2019)
Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. arXiv:1804.02767 (2018)
Geiger, A., Lenz, P., Stiller, C., et al.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)
Acknowledgment
This work was supported by the Chongqing Science and Technology Bureau (cstc2019jscx-zdztzxX0050), the National Natural Science Foundation of China (51505054).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Feng, M., Liu, J., Wang, X., Li, C. (2021). MF-SLAM: Multi-focal SLAM. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-89134-3_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89133-6
Online ISBN: 978-3-030-89134-3
eBook Packages: Computer ScienceComputer Science (R0)