Skip to main content

Neural Network-Based Method for Solving Inverse Kinematics of Hyper-redundant Cable-Driven Manipulators

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Included in the following conference series:

Abstract

Compared with traditional manipulator (TM), hyper-redundant cable-driven manipulators (HRCDMs) has superior performance, especially its great bendability and flexibility, which can avoid obstacles in narrow and confined workspaces. However, as the degrees of freedom (DOFs) increase, inverse kinematics (IK) of the HRCDM becomes more challenging. The traditional method consists of two steps: from operational space (OS) to joint space (JS) and from JS to cable-driven space (CDS). It is particularly time-consuming to solve joint angle based on Jacobian iteratively, and it is of great difficulty to meet the real-time requirement of HRCDM operations. Besides, it is not easy to obtain cable lengths and pulling forces of HRCDMs. Based on this, this paper proposes two inverse kinematics solving methods based on neural network (NN) modeling, which incorporates the feedback information of joint angles. These methods do not need to calculate the intermediate variable of joint angle, but directly establishes BPNN and RBFNN from pose to cable length, which improves the convenience of modeling and computation efficiency. Finally, a tracking experiment of three different trajectories is designed on an HRCDM with 12-DOFs. In terms of trajectory tracking error and computational efficiency, the presented BPNN and RBFNN modeling methods are compared with the traditional Jacobian-based iterative approach. Simulation results show that, in the case of comparable end-effector tracking accuracy, the computational efficiency of the NN-based method is significantly higher than that of the traditional approach, and RBFNN is better than BPNN in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber, B., et al.: Teleoperating robots from the international space station: microgravity effects on performance with force feedback. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, pp. 8144–8150 (2019)

    Google Scholar 

  2. Burgner-Kahrs, J., et al.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)

    Article  Google Scholar 

  3. Whitman, J., et al.: Snake robot urban search after the 2017 Mexico City earthquake. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Philadelphia, PA, USA, pp. 1–6 (2018)

    Google Scholar 

  4. Renda, F., et al.: Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans. Robot. 30(5), 1109–1122 (2014)

    Article  Google Scholar 

  5. Li, J., et al.: Can a continuum manipulator fetch an object in an unknown cluttered space? IEEE Robot. Autom. Lett. 2(1), 2–9 (2017)

    Article  Google Scholar 

  6. Xu, W., et al.: Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator. IEEE/ASME Trans. Mechatron. 23(4), 1693–1704 (2018)

    Article  Google Scholar 

  7. Peng, J., Xu, W., Yang, T., Hu, Z., Liang, B.: Dynamic modeling and trajectory tracking control method of segmented linkage cable-driven hyper-redundant robot. Nonlinear Dyn. 101(1), 233–253 (2020). https://doi.org/10.1007/s11071-020-05764-7

    Article  Google Scholar 

  8. Peng, J., et al.: End-effector pose and arm shape synchronous planning methods of a hyper-redundant manipulator for spacecraft repairing. Mech. Mach. Theory. 155, 1–25 (2021)

    Article  Google Scholar 

  9. Liu, T., et al.: A cable-driven redundant spatial manipulator with improved stiffness and load capacity. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 6628–6633 (2018)

    Google Scholar 

  10. Liu, T., et al.: Improved mechanical design and simplified motion planning of hybrid active and passive cable-driven segmented manipulator with coupled motion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, pp. 5978–5983 (2019)

    Google Scholar 

  11. Li, C., et al.: POE-based robot kinematic calibration using axis configuration space and the adjoint error model. IEEE Trans. Robot. 32(5), 1264–1279 (2016)

    Article  Google Scholar 

  12. Rolf, M., Steil, J.J.: Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, pp. 3440–3446 (2012)

    Google Scholar 

  13. Hassan, T., et al.: Active-braid, a bioinspired continuum manipulator. IEEE Robot. Autom. Lett. 2(4), 2104–2110 (2017)

    Article  Google Scholar 

  14. Chirikjian, G.S., Burdick, J.W.: Kinematically optimal hyper-redundant manipulator configurations. In: 1992 IEEE International Conference on Robotics and Automation, Nice, France, pp. 415–420 (1992)

    Google Scholar 

  15. Colomé, A., Torras, C.: Closed-loop inverse kinematics for redundant robots: comparative assessment and two enhancements. IEEE/ASME Trans. Mechatron. 20(2), 944–955 (2015)

    Article  Google Scholar 

  16. Xu, W., et al.: Singularity analysis and avoidance for robot manipulators with nonspherical wrists. IEEE Trans. Ind. Electron. 63(1), 277–290 (2016)

    Article  Google Scholar 

  17. Liu, T., et al.: A hybrid active and passive cable-driven segmented redundant manipulator: design, kinematics, and planning. IEEE/ASME Trans. Mechatron. 26(2), 930–942 (2021)

    Article  Google Scholar 

  18. Kolpashchikov, D.Y., et al.: FABRIK-based inverse kinematics for multi-section continuum robots. In: The 2018 18th International Conference on Mechatronics - Mechatronika (ME), Brno, Czech Republic, pp. 1–8 (2018)

    Google Scholar 

  19. Zhang, W., et al.: FABRIKc: an efficient iterative inverse kinematics solver for continuum robots. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, pp. 346–352 (2018)

    Google Scholar 

  20. Grassmann, R., et al.: Learning the forward and inverse kinematics of a 6-DOF concentric tube continuum robot in SE(3). In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 5125–5132 (2018)

    Google Scholar 

  21. Sun, C., et al.: Adaptive neural network control of biped robots. IEEE Trans. Syst. Man Cybern. Syst. 47(2), 315–326 (2017)

    Google Scholar 

  22. Li, S., et al.: Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2243–2254 (2017)

    Article  MathSciNet  Google Scholar 

  23. Peng, J., et al.: A hybrid hand-eye calibration method for multilink cable-driven hyper-redundant manipulators. IEEE Trans. Instrum. Meas. 70(5010413), 1–13 (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Key Area Research and Development Program of Guangdong Province (Grant No. 2020B1111010001), the Shenzhen Municipal Basic Research Project for Natural Science Foundation (Grant No. JCYJ20190806143408992), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110680), and the Fundamental Research Funds for the Central Universities (Grant No. 2021qntd08), Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqing Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C., Peng, J. (2021). Neural Network-Based Method for Solving Inverse Kinematics of Hyper-redundant Cable-Driven Manipulators. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics