Skip to main content

Inverse Determination of B340LA Material Parameters in Bending Springback Process by Dynamic Optimization Approach

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Included in the following conference series:

  • 2904 Accesses

Abstract

In order to obtain the accurate B340LA material parameter, in this paper, a dynamic optimization approach was proposed to inverse determine the material parameters in bending springback process. After the inverse determination for material parameters, the finite element simulation result indicates a close agreement with actual experiment, and the relative errors between inverse determined and actual material parameters are also very small. It can be concluded that proposed optimization approach to inverse determine the material parameters is efficient and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leu, D.-K.: Position deviation and springback in V-die bending process with asymmetric dies. Int. J. Adv. Manuf. Technol. 79(5–8), 1095–1108 (2015). https://doi.org/10.1007/s00170-014-6532-x

    Article  Google Scholar 

  2. Zong, Y., Liu, P., Guo, B., Shan, D.: Springback evaluation in hot v-bending of Ti-6Al-4V alloy sheets. Int. J. Adv. Manuf. Technol. 76, 1–9 (2014). https://doi.org/10.1007/s00170-014-6190-z

    Article  Google Scholar 

  3. Zhou, J., Zhuo, F., Huang, L., Luo, Y.: Multi-objective optimization of stamping forming process of head using Pareto-based genetic algorithm. J. Central South Univ. 22(9), 3287–3295 (2015). https://doi.org/10.1007/s11771-015-2868-0

    Article  Google Scholar 

  4. Barathwaj, N., Raja, P., Gokulraj, S.: Optimization of assembly line balancing using genetic algorithm. J. Central South Univ. 22(10), 3957–3969 (2015). https://doi.org/10.1007/s11771-015-2940-9

    Article  Google Scholar 

  5. Ghorbani, H., et al.: Performance comparison of bubble point pressure from oil PVT data: several neurocomputing techniques compared. Experimental Comput. Multiphase Flow 2(4), 225–246 (2019). https://doi.org/10.1007/s42757-019-0047-5

    Article  Google Scholar 

  6. Manoochehri, M., Kolahan, F.: Integration of artificial neural network and simulated annealing algorithm to optimize deep drawing process. Int. J. Adv. Manuf. Technol. 73(1–4), 241–249 (2014). https://doi.org/10.1007/s00170-014-5788-5

    Article  Google Scholar 

  7. Vitorino, L.N., Ribeiro, S.F., Bastos, C.J.A.: A mechanism based on artificial Bee colony to generate diversity in particle swarm optimization. Neurocomputing 148, 39–45 (2015)

    Article  Google Scholar 

  8. Eberhart, R., Kennedy, J.: New optimizer using particle swarm theory. In: Proceedings of the 1995 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  9. Bonyadi, M.R. A theoretical guideline for designing an effective adaptive particle swarm. IEEE Trans. Evol. Comput. 2019 (2019)

    Google Scholar 

  10. Chen, D.-D., Lin, Y.-C., Chen, X.-M.: A strategy to control microstructures of a Ni-based superalloy during hot forging based on particle swarm optimization algorithm. Adv. Manuf. 2019, 238–247 (2019)

    Google Scholar 

  11. Winnicki, M., Małachowska, A., Ambroziak, A.: Taguchi optimization of the thickness of a coating deposited by LPCS. Arch. Civ. Mech. Eng. 14(4), 561–568 (2014). https://doi.org/10.1016/j.acme.2014.04.006

    Article  Google Scholar 

  12. Piffl, M., Stadlober, E.: The depth-design: an efficient generation of high dimensional computer experiments. J. Stat. Plan. Infer. 164, 10–26 (2015)

    Article  MathSciNet  Google Scholar 

  13. Milivojevic, M., Stopic, S., Friedrich, B., Stojanovic, B., Drndarevic, D.: Computer modeling of high-pressure leaching process of nickel laterite by design of experiments and neural networks. Int. J. Min. Met. Mater. 19, 584–594 (2012)

    Article  Google Scholar 

  14. Hasanzadehshooiili, H., Lakirouhani, A., Šapalas, A.: Neural network prediction of buckling load of steel arch-shells. Arch. Civ. Mech. Eng. 12(4), 477–484 (2012). https://doi.org/10.1016/j.acme.2012.07.005

    Article  Google Scholar 

  15. Haddadzadeh, M., Razfar, M.R., Mamaghani, M.R.M.: Novel approach to initial blank design in deep drawing using artificial neural network. P I Mech. Eng. B-J Eng. 223, 1323–1330 (2009)

    Google Scholar 

  16. Song, Y., Yu, Z.: Springback prediction in T-section beam bending process using neural networks and finite element method. Arch. Civ. Mech. Eng. 13(2), 229–241 (2013). https://doi.org/10.1016/j.acme.2012.11.004

    Article  Google Scholar 

  17. Kitayama, S., Huang, S.S., Yamazaki, K.: Optimization of variable blank holder force trajectory for springback reduction via sequential approximate optimization with radial basis function network. Struct. Multidiscip. O 47, 289–300 (2013)

    Article  Google Scholar 

  18. Song, J.H., Huh, H., Kim, S.H.: Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology. J. Eng. Mater-T ASME 129, 397–406 (2007)

    Article  Google Scholar 

  19. Guo, X., Li, D., Wu, Z., Tian, Q.-H.: Application of response surface methodology in optimizaing the sulfationoastingeaching process of nickel laterite. Int. J. Miner. Metall. Mater. 19(3), 199–204 (2012). https://doi.org/10.1007/s12613-012-0538

    Article  Google Scholar 

  20. Zhang, W., Cho, C., Xiao, Y.: An effective inverse procedure for identifying viscoplastic material properties of polymer Nafion. Comp. Mater. Sci. 95, 159–165 (2014)

    Article  Google Scholar 

  21. Wang, L.Q., Shan, S.Q., Wang, G.G.: Mode-pursuing sampling method for global optimization on expensive black-box functions. Eng. Optimiz. 36, 419–438 (2004)

    Article  Google Scholar 

  22. Duan, X., Wang, G.G., Kang, X., Niu, Q., Naterer, G., Peng, Q.: Performance study of mode-pursuing sampling method. Eng. Optimiz. 41, 1–21 (2009)

    Article  Google Scholar 

  23. Wang, G.G.: Adaptive response surface method using inherited Latin hypercube design points. J. Mech. Design. 125, 210–220 (2003)

    Article  Google Scholar 

  24. Liu, H., Jiang, K.Y., Li, B., Lu, P.: A rapid inverse determination of material performance parameters in sheet metal forming. In: 2nd International Conference on Advanced Engineering Materials and Technology, Zhuhai, China, pp. 1035–1040, 06–08 July 2012

    Google Scholar 

  25. Yan, Y., Wang, H.B., Li, Q.: The inverse parameter identification of Hill 48 yield criterion and its verification in press bending and roll forming process simulations. J. Manuf. Process. 20, 46–53 (2015)

    Article  Google Scholar 

  26. Zhu, Q.C.: Research on the Drawing Process and Spring Back Control of the B-pillar Reinforced Panel. master. Thesis, Hefei University of Technology, Hefei, China (2013) (in Chinese)

    Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program of China (2019YFB1312101).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Liang, L., Zhou, T., Zhang, H., Ma, L. (2021). Inverse Determination of B340LA Material Parameters in Bending Springback Process by Dynamic Optimization Approach. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics