Skip to main content

Kinematic Reliability Evaluation of Planar Mechanisms with Time-Varying Correlation of Wear in Multiple Joints

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Included in the following conference series:

  • 3284 Accesses

Abstract

The wear in joints is a critical factor influencing the service life of the mechanism. Unlike existing researches that focus on wear prediction of joints, the correlation of wear among multiple joints in a mechanism is investigated in this study. The wear correlation of multiple joints in a mechanism is analyzed firstly. Then, a kinematic reliability evaluation method of planar mechanisms considering the wear correlation of joints is proposed. In the method, the wear depth in joints is modeled by Gamma process to take the stochastic characteristic into account. Vine copula functions and two correlation evolution equations are introduced to capture the time-varying and pairwise correlation of wear in the joints. At last, a numerical procedure is presented based on the Monte Carlo simulation. A four-bar mechanism is used to illustrate the proposed method. The results show that the wear of joints in a mechanism correlates with each other strongly, and the correlation varied with time. The correlation differs with one another in different pairs of joints. Besides, the time-varying correlation of wear has a significant influence on the kinematic reliability of the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, Y., Chen, G., Sun, D., Gao, Y., Wang, K.: Dynamic analysis and optimization design of a planar slider-crank mechanism with flexible components and two clearance joints. Mech. Mach. Theory 99, 37–57 (2016)

    Article  Google Scholar 

  2. Lai, X., et al.: Computational prediction and experimental validation of revolute joint clearance wear in the low-velocity planar mechanism. Mech. Syst. Sig. Process. 85, 963–976 (2017)

    Article  Google Scholar 

  3. Wu, J., Yan, S., Zuo, M.J.: Evaluating the reliability of multi-body mechanisms: a method considering the uncertainties of dynamic performance. Reliab. Eng. Syst. Saf. 149, 96–106 (2016)

    Article  Google Scholar 

  4. Bai, Z.F., Zhao, Y., Chen, J.: Dynamics analysis of planar mechanical system considering revolute clearance joint wear. Tribol. Int. 64, 85–95 (2013)

    Article  Google Scholar 

  5. Zhu, A., He, S., Zhao, J., Luo, W.: A nonlinear contact pressure distribution model for wear calculation of planar revolute joint with clearance. Nonlinear Dyn. 88(1), 315–328 (2016). https://doi.org/10.1007/s11071-016-3244-9

    Article  Google Scholar 

  6. Su, Y., Chen, W., Tong, Y., Xie, Y.: Wear prediction of clearance joint by integrating multi-body kinematics with finite-element method. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 224(8), 815–823 (2010)

    Google Scholar 

  7. An, D., Choi, J.-H., Schmitz, T.L., Kim, N.H.: In situ monitoring and prediction of progressive joint wear using Bayesian statistics. Wear 270(11–12), 828–838 (2011)

    Article  Google Scholar 

  8. Li, P., Chen, W., Li, D., Yu, R., Zhang, W.: Wear analysis of two revolute joints with clearance in multibody systems. J. Comput. Nonlinear Dyn. 11(1), 011009–7 (2016)

    Google Scholar 

  9. Jiang, S., Chen, X., Deng, Y.: Dynamic response analysis of planar multilink mechanism considering wear in clearances. Shock Vib. 2019, 5389732 (2019)

    Google Scholar 

  10. Wang, W., Gao, H., Zhou, C., Zhang, Z.: Reliability analysis of motion mechanism under three types of hybrid uncertainties. Mech. Mach. Theory 121, 769–784 (2018)

    Article  Google Scholar 

  11. Geng, X., Li, M., Liu, Y., Zheng, W., Zhao, Z.: Non-probabilistic kinematic reliability analysis of planar mechanisms with non-uniform revolute clearance joints. Mech. Mach. Theory 140, 413–433 (2019)

    Article  Google Scholar 

  12. Bai, Z.F., Sun, Y.: A study on dynamics of planar multibody mechanical systems with multiple revolute clearance joints. Eur. J. Mech. - ASolids 60, 95–111 (2016)

    Article  Google Scholar 

  13. Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlinear Dyn. 7(3), 031003 (2012)

    Google Scholar 

  14. Archard, J.: Wear Theory and Mechanisms. Wear Control Handbook, New York (1980)

    Google Scholar 

  15. Pan, Z., Balakrishnan, N.: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliab. Eng. Syst. Saf. 96(8), 949–957 (2011)

    Article  Google Scholar 

  16. Bedford, T., Cooke, R.M.: Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32(1), 245–268 (2001)

    Article  MathSciNet  Google Scholar 

  17. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insur. Math. Econ. 44(2), 182–198 (2009)

    Article  MathSciNet  Google Scholar 

  18. Jiang, C., Zhang, W., Han, B., Ni, Y., Song, L.J.: A vine-copula-based reliability analysis method for structures with multidimensional correlation. J. Mech. Des. 137(6), 061405–061413 (2015)

    Google Scholar 

  19. Akaike, H.: Information Theory and An Extension of the Maximum Likelihood Principle. Springer, Berlin (1998)

    Book  Google Scholar 

  20. Jawale, H.P., Thorat, H.T.: Investigation of positional error in two degree of freedom mechanism with joint clearance. J. Mech. Robot. 4, 011002 (2012)

    Google Scholar 

  21. Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23(3), 470–472 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, X., Meng, Q., Liu, XJ. (2021). Kinematic Reliability Evaluation of Planar Mechanisms with Time-Varying Correlation of Wear in Multiple Joints. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics