Abstract
The wear in joints is a critical factor influencing the service life of the mechanism. Unlike existing researches that focus on wear prediction of joints, the correlation of wear among multiple joints in a mechanism is investigated in this study. The wear correlation of multiple joints in a mechanism is analyzed firstly. Then, a kinematic reliability evaluation method of planar mechanisms considering the wear correlation of joints is proposed. In the method, the wear depth in joints is modeled by Gamma process to take the stochastic characteristic into account. Vine copula functions and two correlation evolution equations are introduced to capture the time-varying and pairwise correlation of wear in the joints. At last, a numerical procedure is presented based on the Monte Carlo simulation. A four-bar mechanism is used to illustrate the proposed method. The results show that the wear of joints in a mechanism correlates with each other strongly, and the correlation varied with time. The correlation differs with one another in different pairs of joints. Besides, the time-varying correlation of wear has a significant influence on the kinematic reliability of the mechanism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, Y., Chen, G., Sun, D., Gao, Y., Wang, K.: Dynamic analysis and optimization design of a planar slider-crank mechanism with flexible components and two clearance joints. Mech. Mach. Theory 99, 37–57 (2016)
Lai, X., et al.: Computational prediction and experimental validation of revolute joint clearance wear in the low-velocity planar mechanism. Mech. Syst. Sig. Process. 85, 963–976 (2017)
Wu, J., Yan, S., Zuo, M.J.: Evaluating the reliability of multi-body mechanisms: a method considering the uncertainties of dynamic performance. Reliab. Eng. Syst. Saf. 149, 96–106 (2016)
Bai, Z.F., Zhao, Y., Chen, J.: Dynamics analysis of planar mechanical system considering revolute clearance joint wear. Tribol. Int. 64, 85–95 (2013)
Zhu, A., He, S., Zhao, J., Luo, W.: A nonlinear contact pressure distribution model for wear calculation of planar revolute joint with clearance. Nonlinear Dyn. 88(1), 315–328 (2016). https://doi.org/10.1007/s11071-016-3244-9
Su, Y., Chen, W., Tong, Y., Xie, Y.: Wear prediction of clearance joint by integrating multi-body kinematics with finite-element method. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 224(8), 815–823 (2010)
An, D., Choi, J.-H., Schmitz, T.L., Kim, N.H.: In situ monitoring and prediction of progressive joint wear using Bayesian statistics. Wear 270(11–12), 828–838 (2011)
Li, P., Chen, W., Li, D., Yu, R., Zhang, W.: Wear analysis of two revolute joints with clearance in multibody systems. J. Comput. Nonlinear Dyn. 11(1), 011009–7 (2016)
Jiang, S., Chen, X., Deng, Y.: Dynamic response analysis of planar multilink mechanism considering wear in clearances. Shock Vib. 2019, 5389732 (2019)
Wang, W., Gao, H., Zhou, C., Zhang, Z.: Reliability analysis of motion mechanism under three types of hybrid uncertainties. Mech. Mach. Theory 121, 769–784 (2018)
Geng, X., Li, M., Liu, Y., Zheng, W., Zhao, Z.: Non-probabilistic kinematic reliability analysis of planar mechanisms with non-uniform revolute clearance joints. Mech. Mach. Theory 140, 413–433 (2019)
Bai, Z.F., Sun, Y.: A study on dynamics of planar multibody mechanical systems with multiple revolute clearance joints. Eur. J. Mech. - ASolids 60, 95–111 (2016)
Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlinear Dyn. 7(3), 031003 (2012)
Archard, J.: Wear Theory and Mechanisms. Wear Control Handbook, New York (1980)
Pan, Z., Balakrishnan, N.: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliab. Eng. Syst. Saf. 96(8), 949–957 (2011)
Bedford, T., Cooke, R.M.: Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32(1), 245–268 (2001)
Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insur. Math. Econ. 44(2), 182–198 (2009)
Jiang, C., Zhang, W., Han, B., Ni, Y., Song, L.J.: A vine-copula-based reliability analysis method for structures with multidimensional correlation. J. Mech. Des. 137(6), 061405–061413 (2015)
Akaike, H.: Information Theory and An Extension of the Maximum Likelihood Principle. Springer, Berlin (1998)
Jawale, H.P., Thorat, H.T.: Investigation of positional error in two degree of freedom mechanism with joint clearance. J. Mech. Robot. 4, 011002 (2012)
Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23(3), 470–472 (1952)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhuang, X., Meng, Q., Liu, XJ. (2021). Kinematic Reliability Evaluation of Planar Mechanisms with Time-Varying Correlation of Wear in Multiple Joints. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-89134-3_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89133-6
Online ISBN: 978-3-030-89134-3
eBook Packages: Computer ScienceComputer Science (R0)