Skip to main content

Design and Control of a Quadruped Robot with Changeable Configuration

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Included in the following conference series:

  • 3034 Accesses

Abstract

This paper introduces a quadruped robot with a wide range of motion for joints, which provides a basis for the robot to change its configuration. Two basic configurations are defined for the robot, including mammal-like configuration, which the front and hind knees point to each other and one reptile-like configuration with sprawling legs. Different control modes are configured to make the robot can switch between different configuration, which gives it ability to face different environments. For the mammal-like configuration, a parametric trotting gait is designed to traverse structural terrain level ground. For the reptile-like configuration, a turtle gait is designed to achieve robust locomotion on uneven terrain. Simulations and experiments show that the robot is capable to move on multiple terrains, including doorsills, slopes, stones. This paper demonstrates that through the design of leg foot configuration, some difficult tasks can be achieved in a rather simple way without using complicated control algorithms, which shows the potential of multi configuration in the application of quadruped robot.

This work was supported by the National Natural Science Foundation of China (62003190), the China Postdoctoral Science Foundation (2019M662359), the fellowship of China Postdoctoral Science Foundation (2020T130369), and the Natural Science Foundation of Shandong Province (ZR201911040226).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rong, X., Li, Y., Ruan, J., et al.: Design and simulation for a hydraulic actuated quadruped robot. J. Mech. Sci. Technol. 26, 1171–1177 (2012)

    Article  Google Scholar 

  2. Hutter, M., et al.: ANYmal - toward legged robots for harsh environments. Adv. Robot. 31(17) (2017). https://doi.org/10.1080/01691864.2017.1378591

  3. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: BigDog, the rough-terrain quadruped robot. In: Proceedings of the 17th World Congress, pp. 10823–10825 (2008)

    Google Scholar 

  4. Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ - a hydraulically and electrically actuated quadruped robot. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, no. 6, pp. 831–849 (2011)

    Google Scholar 

  5. Wang, H., Zheng, Y.F., Jun, Y., Oh, P.: DRC-hubo walking on rough terrains. In: IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (2014)

    Google Scholar 

  6. Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20(7), 616–631 (2001)

    Article  Google Scholar 

  7. Seok, S., Wang, A., Otten, D., Lang, J., Kim, S.: Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3307–3312 (2013)

    Google Scholar 

  8. Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M.H., Remy, C.D., Siegwart, R.: StarlETH: a compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: International Conference on Climbing and Walking Robots (CLAWAR), pp. 483–490 (2012)

    Google Scholar 

  9. Tarokh, M., Lee, M.: Kinematics Modeling of Multi-legged Robots walking on Rough Terrain. In: 2008 Second International Conference on Future Generation Communication and Networking Symposia, Sanya, pp. 12–16 (2008)

    Google Scholar 

  10. Kitano, S., Hirose, S., Endo, G., Fukushima, E.F.: Development of lightweight sprawling-type quadruped robot TITAN-XIII and its dynamic walking. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 6025–6030 (2013)

    Google Scholar 

  11. Sakakibara, Y., Kan, K., Hosoda, Y., Hattori, M., Fujie, M.: Foot trajectory for a quadruped walking machine. In: Proceedings of IEEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications, IROS 1990, pp. 315–322. IEEE (1990)

    Google Scholar 

  12. Rong, X.W., Li, Y.B., Ruan, J.H., Song, H.J.: Kinematics analysis and simulation of a quadruped robot. Appl. Mech. Mater. 26, 517–522 (2010)

    Article  Google Scholar 

  13. Farley, C.T., Taylor, C.R.: A mechanical trigger for the trot-gallop transition in horses. Science 253(5017), 306–308 (1991)

    Article  Google Scholar 

  14. Lu, G., et al.: A novel multi-configuration quadruped robot with redundant DOFs and its application scenario analysis. In: 2021 International Conference on Computer, Control and Robotics (ICCCR) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoteng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Z., Zhu, Z., Zhang, G., Li, Y., Rong, X. (2021). Design and Control of a Quadruped Robot with Changeable Configuration. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics